[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 2 (8-2023) ::
ieijqp 2023, 12(2): 26-38 Back to browse issues page
Improvement of the resilience of distribution networks by the construction of tie lines: An innovative method based on iteration and graph theory
Hossein Lotfi1 , Rahim Ildarabadi *1 , Mohammad Ebrahim Hajiabadi1
1- Department of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran
Abstract:   (884 Views)

Adverse weather conditions and natural disasters always inflict extensive losses and outages in distribution networks while the number and severity of these incidents have often been on the rise in recent years. Therefore, evaluating the resilience of the network and its reversibility in the face of adverse weather conditions and reducing the permeability of the electricity distribution network exposed to natural disasters should be among the planning priorities for the design and optimal operation of these networks. T​this study aims to construct new tie lines between the healthy part and the damaged parts of a network in the event of a possible accident to quickly restore service to the parts that have lost electricity. The paper presents an innovative iteration-based method that uses graph theory to optimize the total objective function, including the cost of constructing tie lines, the cost of reliability, and the cost of resilience. The proposed method was applied to a part of the RBTS test system, and the effect of constructing new tie lines was investigated on the resilience and reliability indicators of the network according to the cost of their construction

Article number: 3
Keywords: Distribution network, resilience, reliability, iteration-based algorithm, energy not supplied
Full-Text [PDF 1330 kb]   (222 Downloads)    
Type of Study: Research |
Received: 2022/08/27 | Accepted: 2023/04/24 | Published: 2023/08/1
References
1. Attoh-Okine, N. O., Cooper, A. T., & Mensah, S. A. (2009). Formulation of resilience index of urban infrastructure using belief functions. IEEE Systems Journal, 3(2), 147-153. [DOI:10.1109/JSYST.2009.2019148]
2. Bajpai, P., Chanda, S., & Srivastava, A. K. (2016). A novel metric to quantify and enable resilient distribution system using graph theory and choquet integral. IEEE Transactions on Smart Grid, 9(4), 2918-2929. [DOI:10.1109/TSG.2016.2623818]
3. Campbell, R. J., & Lowry, S. (2012). Weather-related power outages and electric system resiliency.
4. Chanda, S. (2015). Measuring and enabling resiliency in distribution sysems with multiple microgrids Washington State University].
5. Chen, C., Wang, J., Qiu, F., & Zhao, D. (2015). Resilient distribution system by microgrids formation after natural disasters. IEEE Transactions on Smart Grid, 7(2), 958-966. [DOI:10.1109/TSG.2015.2429653]
6. Gao, H., Chen, Y., Xu, Y., & Liu, C.-C. (2016). Resilience-oriented critical load restoration using microgrids in distribution systems. IEEE Transactions on Smart Grid, 7(6), 2837-2848. [DOI:10.1109/TSG.2016.2550625]
7. Gautam, P., Piya, P., & Karki, R. (2020). Resilience assessment of distribution systems integrated with distributed energy resources. IEEE Transactions on Sustainable Energy, 12(1), 338-348. [DOI:10.1109/TSTE.2020.2994174]
8. Khodaei, A. (2014). Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on Smart Grid, 5(4), 1584-1591. [DOI:10.1109/TSG.2014.2311465]
9. Liu, X., Shahidehpour, M., Li, Z., Liu, X., Cao, Y., & Bie, Z. (2016). Microgrids for enhancing the power grid resilience in extreme conditions. IEEE Transactions on Smart Grid, 8(2), 589-597. [DOI:10.1109/TSG.2016.2579999]
10. Lorca, A., & Sun, X. A. (2014). Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Transactions on power systems, 30(4), 1702-1713. [DOI:10.1109/TPWRS.2014.2357714]
11. Ma, S., Chen, B., & Wang, Z. (2016). Resilience enhancement strategy for distribution systems under extreme weather events. IEEE Transactions on Smart Grid, 9(2), 1442-1451. [DOI:10.1109/TSG.2016.2591885]
12. Ma, S., Su, L., Wang, Z., Qiu, F., & Guo, G. (2018). Resilience enhancement of distribution grids against extreme weather events. IEEE Transactions on power systems, 33(5), 4842-4853. [DOI:10.1109/TPWRS.2018.2822295]
13. Manshadi, S. D., & Khodayar, M. E. (2015). Resilient operation of multiple energy carrier microgrids. IEEE Transactions on Smart Grid, 6(5), 2283-2292. [DOI:10.1109/TSG.2015.2397318]
14. Mousavizadeh, S., Haghifam, M.-R., & Shariatkhah, M.-H. (2018). A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources. Applied energy, 211, 443-460. [DOI:10.1016/j.apenergy.2017.11.067]
15. Najafi, J., Peiravi, A., & Guerrero, J. M. (2018). Power distribution system improvement planning under hurricanes based on a new resilience index. Sustainable cities and society, 39, 592-604. [DOI:10.1016/j.scs.2018.03.022]
16. Panteli, M., & Mancarella, P. (2015a). Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electric Power Systems Research, 127, 259-270. [DOI:10.1016/j.epsr.2015.06.012]
17. Panteli, M., & Mancarella, P. (2015b). Operational resilience assessment of power systems under extreme weather and loading conditions. 2015 IEEE Power & Energy Society General Meeting, [DOI:10.1109/PESGM.2015.7286087]
18. Panteli, M., Trakas, D. N., Mancarella, P., & Hatziargyriou, N. D. (2016). Boosting the power grid resilience to extreme weather events using defensive islanding. IEEE Transactions on Smart Grid, 7(6), 2913-2922. [DOI:10.1109/TSG.2016.2535228]
19. Poudel, S., & Dubey, A. (2018). Critical load restoration using distributed energy resources for resilient power distribution system. IEEE Transactions on power systems, 34(1), 52-63. [DOI:10.1109/TPWRS.2018.2860256]
20. Wang, S., Li, Z., Wu, L., Shahidehpour, M., & Li, Z. (2013). New metrics for assessing the reliability and economics of microgrids in distribution system. IEEE Transactions on power systems, 28(3), 2852-2861. [DOI:10.1109/TPWRS.2013.2249539]
21. Wang, X., Li, Z., Shahidehpour, M., & Jiang, C. (2017). Robust line hardening strategies for improving the resilience of distribution systems with variable renewable resources. IEEE Transactions on Sustainable Energy, 10(1), 386-395. [DOI:10.1109/TSTE.2017.2788041]
22. Wang, Y., Chen, C., Wang, J., & Baldick, R. (2015). Research on resilience of power systems under natural disasters-A review. IEEE Transactions on power systems, 31(2), 1604-1613. [DOI:10.1109/TPWRS.2015.2429656]
23. Yuan, C., Illindala, M. S., & Khalsa, A. S. (2016). Modified Viterbi algorithm based distribution system restoration strategy for grid resiliency. IEEE Transactions on Power Delivery, 32(1), 310-319. [DOI:10.1109/TPWRD.2016.2613935]
24. Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., & Zeng, B. (2016). Robust optimization-based resilient distribution network planning against natural disasters. IEEE Transactions on Smart Grid, 7(6), 2817-2826. [DOI:10.1109/TSG.2015.2513048]
25. Zhang, B., Dehghanian, P., & Kezunovic, M. (2017). Optimal allocation of PV generation and battery storage for enhanced resilience. IEEE Transactions on Smart Grid, 10(1), 535-545. [DOI:10.1109/TSG.2017.2747136]
26. Attoh-Okine, N. O., Cooper, A. T., & Mensah, S. A. (2009). Formulation of resilience index of urban infrastructure using belief functions. IEEE Systems Journal, 3(2), 147-153. [DOI:10.1109/JSYST.2009.2019148]
27. Bajpai, P., Chanda, S., & Srivastava, A. K. (2016). A novel metric to quantify and enable resilient distribution system using graph theory and choquet integral. IEEE Transactions on Smart Grid, 9(4), 2918-2929. [DOI:10.1109/TSG.2016.2623818]
28. Campbell, R. J., & Lowry, S. (2012). Weather-related power outages and electric system resiliency.
29. Chanda, S. (2015). Measuring and enabling resiliency in distribution sysems with multiple microgrids Washington State University].
30. Chen, C., Wang, J., Qiu, F., & Zhao, D. (2015). Resilient distribution system by microgrids formation after natural disasters. IEEE Transactions on Smart Grid, 7(2), 958-966. [DOI:10.1109/TSG.2015.2429653]
31. Gao, H., Chen, Y., Xu, Y., & Liu, C.-C. (2016). Resilience-oriented critical load restoration using microgrids in distribution systems. IEEE Transactions on Smart Grid, 7(6), 2837-2848. [DOI:10.1109/TSG.2016.2550625]
32. Gautam, P., Piya, P., & Karki, R. (2020). Resilience assessment of distribution systems integrated with distributed energy resources. IEEE Transactions on Sustainable Energy, 12(1), 338-348. [DOI:10.1109/TSTE.2020.2994174]
33. Khodaei, A. (2014). Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on Smart Grid, 5(4), 1584-1591. [DOI:10.1109/TSG.2014.2311465]
34. Liu, X., Shahidehpour, M., Li, Z., Liu, X., Cao, Y., & Bie, Z. (2016). Microgrids for enhancing the power grid resilience in extreme conditions. IEEE Transactions on Smart Grid, 8(2), 589-597. [DOI:10.1109/TSG.2016.2579999]
35. Lorca, A., & Sun, X. A. (2014). Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Transactions on power systems, 30(4), 1702-1713. [DOI:10.1109/TPWRS.2014.2357714]
36. Ma, S., Chen, B., & Wang, Z. (2016). Resilience enhancement strategy for distribution systems under extreme weather events. IEEE Transactions on Smart Grid, 9(2), 1442-1451. [DOI:10.1109/TSG.2016.2591885]
37. Ma, S., Su, L., Wang, Z., Qiu, F., & Guo, G. (2018). Resilience enhancement of distribution grids against extreme weather events. IEEE Transactions on power systems, 33(5), 4842-4853. [DOI:10.1109/TPWRS.2018.2822295]
38. Manshadi, S. D., & Khodayar, M. E. (2015). Resilient operation of multiple energy carrier microgrids. IEEE Transactions on Smart Grid, 6(5), 2283-2292. [DOI:10.1109/TSG.2015.2397318]
39. Mousavizadeh, S., Haghifam, M.-R., & Shariatkhah, M.-H. (2018). A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources. Applied energy, 211, 443-460. [DOI:10.1016/j.apenergy.2017.11.067]
40. Najafi, J., Peiravi, A., & Guerrero, J. M. (2018). Power distribution system improvement planning under hurricanes based on a new resilience index. Sustainable cities and society, 39, 592-604. [DOI:10.1016/j.scs.2018.03.022]
41. Panteli, M., & Mancarella, P. (2015a). Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies. Electric Power Systems Research, 127, 259-270. [DOI:10.1016/j.epsr.2015.06.012]
42. Panteli, M., & Mancarella, P. (2015b). Operational resilience assessment of power systems under extreme weather and loading conditions. 2015 IEEE Power & Energy Society General Meeting, [DOI:10.1109/PESGM.2015.7286087]
43. Panteli, M., Trakas, D. N., Mancarella, P., & Hatziargyriou, N. D. (2016). Boosting the power grid resilience to extreme weather events using defensive islanding. IEEE Transactions on Smart Grid, 7(6), 2913-2922. [DOI:10.1109/TSG.2016.2535228]
44. Poudel, S., & Dubey, A. (2018). Critical load restoration using distributed energy resources for resilient power distribution system. IEEE Transactions on power systems, 34(1), 52-63. [DOI:10.1109/TPWRS.2018.2860256]
45. Wang, S., Li, Z., Wu, L., Shahidehpour, M., & Li, Z. (2013). New metrics for assessing the reliability and economics of microgrids in distribution system. IEEE Transactions on power systems, 28(3), 2852-2861. [DOI:10.1109/TPWRS.2013.2249539]
46. Wang, X., Li, Z., Shahidehpour, M., & Jiang, C. (2017). Robust line hardening strategies for improving the resilience of distribution systems with variable renewable resources. IEEE Transactions on Sustainable Energy, 10(1), 386-395. [DOI:10.1109/TSTE.2017.2788041]
47. Wang, Y., Chen, C., Wang, J., & Baldick, R. (2015). Research on resilience of power systems under natural disasters-A review. IEEE Transactions on power systems, 31(2), 1604-1613. [DOI:10.1109/TPWRS.2015.2429656]
48. Yuan, C., Illindala, M. S., & Khalsa, A. S. (2016). Modified Viterbi algorithm based distribution system restoration strategy for grid resiliency. IEEE Transactions on Power Delivery, 32(1), 310-319. [DOI:10.1109/TPWRD.2016.2613935]
49. Yuan, W., Wang, J., Qiu, F., Chen, C., Kang, C., & Zeng, B. (2016). Robust optimization-based resilient distribution network planning against natural disasters. IEEE Transactions on Smart Grid, 7(6), 2817-2826. [DOI:10.1109/TSG.2015.2513048]
50. Zhang, B., Dehghanian, P., & Kezunovic, M. (2017). Optimal allocation of PV generation and battery storage for enhanced resilience. IEEE Transactions on Smart Grid, 10(1), 535-545. [DOI:10.1109/TSG.2017.2747136]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

lotfi H, ildarabadi R, hajiabadi M E. Improvement of the resilience of distribution networks by the construction of tie lines: An innovative method based on iteration and graph theory. ieijqp 2023; 12 (2) : 3
URL: http://ieijqp.ir/article-1-925-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (8-2023) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4710