1. [1] M. Yazdani-Damavandi, N. Neyestani, G. Chicco, M. Shafie-Khah, and J. P. S. Catalao, "Aggregation of Distributed Energy Resources Under the Concept of Multienergy Players in Local Energy Systems," IEEE Trans. Sustain. Energy, vol. 8, no. 4, pp. 1679-1693, 2017. [ DOI:10.1109/TSTE.2017.2701836] 2. [2] N. Good and P. Mancarella, "Flexibility in Multi-Energy Communities With Electrical and Thermal Storage: A Stochastic, Robust Approach for Multi-Service Demand Response," IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 503-513, 2019. [ DOI:10.1109/TSG.2017.2745559] 3. [3] N. Good, E. Karangelos, A. Navarro-Espinosa, and P. Mancarella, "Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users' discomfort," IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2333-2342, 2015. [ DOI:10.1109/TSG.2015.2399974] 4. [4] E. A. Martínez Ceseña, N. Good, A. L. A. Syrri, and P. Mancarella, "Techno-economic and business case assessment of multi-energy microgrids with co-optimization of energy, reserve and reliability services," Appl. Energy, vol. 210, pp. 896-913, 2018. [ DOI:10.1016/j.apenergy.2017.08.131] 5. [5] J. Le Dréau and P. Heiselberg, "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, vol. 111, pp. 991-1002, 2016. [ DOI:10.1016/j.energy.2016.05.076] 6. [6] B. Alimohammadisagvand, J. Jokisalo, S. Kilpeläinen, M. Ali, and K. Sirén, "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Appl. Energy, vol. 174, pp. 275-287, 2016. [ DOI:10.1016/j.apenergy.2016.04.013] 7. [7] Y. Chen, P. Xu, J. Gu, F. Schmidt, and W. Li, "Measures to improve energy demand flexibility in buildings for demand response (DR): A review," Energy and Buildings, vol. 177. pp. 125-139, 2018. [ DOI:10.1016/j.enbuild.2018.08.003] 8. [8] N. Good, E. A. Martínez Ceseña, C. Heltorp, and P. Mancarella, "A transactive energy modelling and assessment framework for demand response business cases in smart distributed multi-energy systems," Energy, vol. 184, pp. 165-179, 2019. [ DOI:10.1016/j.energy.2018.02.089] 9. [9] X. Jin, K. Baker, S. Isley, and D. Christensen, "User-preference-driven model predictive control of residential building loads and battery storage for demand response," in Proceedings of the American Control Conference, 2017. [ DOI:10.23919/ACC.2017.7963592] 10. [10] A. Taşcıkaraoğlu, N. G. Paterakis, O. Erdinç, and J. P. S. Catalão, "Combining the Flexibility From Shared Energy Storage Systems and DLC-Based Demand Response of HVAC Units for Distribution System Operation Enhancement," IEEE Trans. Sustain. Energy, vol. 10, no. 1, pp. 137-148, 2019. [ DOI:10.1109/TSTE.2018.2828337] 11. [11] S. M. Kazemi-Razi, M. Mirsalim, H. Askarian-Abyaneh, H. Nafisi, and M. Marzband, "Maximization of Wind Energy Utilization and Flicker Propagation Mitigation Using SC and STATCOM," in 2018 Smart Grid Conference (SGC), 2018, pp. 1-6. [ DOI:10.1109/SGC.2018.8777744] 12. [12] P. Mancarella and G. Chicco, "Real-Time Demand Response From Energy Shifting in Distributed Multi-Generation," IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1928-1938, 2013. [ DOI:10.1109/TSG.2013.2258413] 13. [13] E. A. Martínez Ceseña, N. Good, and P. Mancarella, "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, vol. 82, pp. 222-232, Jul. 2015. [ DOI:10.1016/j.enpol.2015.03.012] 14. [14] L. Zhang, N. Good, and P. Mancarella, "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Appl. Energy, vol. 233-234, pp. 709-723, Jan. 2019. [ DOI:10.1016/j.apenergy.2018.10.058] 15. [15] N. P. Good, "Techno-Economic Assessment of Flexible Demand," The University of Manchester (United Kingdom), 2015. 16. [16] O. Mégel, J. L. Mathieu, and G. Andersson, "Scheduling distributed energy storage units to provide multiple services under forecast error," Int. J. Electr. Power Energy Syst., vol. 72, pp. 48-57, 2015. [ DOI:10.1016/j.ijepes.2015.02.010] 17. [17] S. Pfenninger and L. Staffell, "Renewables.ninja." [Online]. Available: https://www.renewables.ninja/. 18. [18] APX-ENDEX., "APX Power U.K.," (Nov. 10, 2014). [Online]. Available: https://www.apxgroup.com/market-results/apx-power-uk/ukpx-rpdhistorical-data/. 19. [19] Elexon., "SSP/SBP/NIV.," Nov. 10, 2014. [Online]. Available: http://www.elexonportal.co.uk/sspsbpniv. 20. [20] ICE-ENDEX, "ICE ENDEX OCM market data 2014," accessed December 3, 2014. [Online]. Available: http://www.iceendex.com/market-data/spot-markets/ocm/. 21. [21] H. Heitsch and W. Römisch, "Scenario reduction algorithms in stochastic programming," Comput. Optim. Appl., vol. 24, no. 2-3, pp. 187-206, 2003. 22. [22] E. S. Trust, "Measurement of domestic hot water consumption in dwellings," Energy Sav Trust, 2008.
|