1. [1] Hooshyar, A., Iravani, R., “Microgrid Protection,” Proceedings of the IEEE, 105 (7), pp. 13321353, 2017. 2. [2] Nunes, J.U.N., Bretas, A.S., Bretas, N.G., HerreraOrozco, A.R., Iurinic, L.U., “Distribution systems high impedance fault location: A spectral domain model considering parametric error processing,” Int J Elec Power, 109, pp. 227241, 2019. 3. [3] Gautam, S., Brahma, S.M., “Detection of high impedance fault in power distribution systems using mathematical morphology,” IEEE Trans Power Syst, 28 (2), pp. 1226–1234, 2018. 4. [4] Chakraborty, S., Das, S., “Application of smart meters in high impedance fault detection on distribution systems,” IEEE Trans Smart Grid, 10 (3), pp. 34653473, 2019. 5. [5] Sarwagya, K., De, S., Nayak, P.K., “Highimpedance fault detection in electrical power distribution systems using moving sum approach,” IET Sci Meas Technol, 12 (1), pp. 1–8, 2018. 6. [6] Ghaderi, A., Herbert L. Ginn III, H.L., Mohammadpour, H.A., “High impedance fault detection: A review,” Electr. Pow. Syst. Res., 143, pp. 376388, 2017. 7. [7] Soheili, A., Sadeh, J., “Evidential reasoning based approach to high impedance fault detection in power distribution systems,” IET Gener Transm Dis, 11(5), pp. 1325–1336, 2017. 8. [8] Lima, E.M., dos Santos.Junqueira, C.M., Brito, N.S.D., de Souza, B.A., de Almeida Coelho, R., de Medeiros, H.G.M.S., “High impedance fault detection method based on the shorttime fourier transform,” IET Gener Transm Dis, 12 (11), pp. 2577–2584, 2018. 9. [9] Fani, B., Bisheh, H., Sadeghkhani, I., “Protection coordination scheme for distribution networks with high penetration of photovoltaic generators,” IET Gener Transm Dis 12 (8), pp.1802–1814, 2018. 10. [10] Lien, K.Y., Chen, S.L., Liao, C.J., Guo, T.Y., Lin, T.M., Shen, J.S., “Energy variance criterion and threshold tuning scheme for high impedance fault detection,” IEEE Trans Power Del, 14, (3), pp. 810–817, 1999. 11. [11] Yu, D.C., Khan, S.H., “An adaptive high and low impedance fault detection method,” IEEE Trans Power Del, 9, (4), pp. 1812–1821, 1994. 12. [12] Russell, B.D., “Detection of arcing faults on distribution feeders,” Texas A&M University, EPRI Report EL2757, 1982. 13. [13] Hughes Aircraft Company, Research Laboratories, I. Lee, “High impedance fault detection using third harmonic current,” Electric Power Research Institute EPRI EL2430, 1982. 14. [14] Aucoin, M., Russell, B.D., “Detection of distribution high impedance faults using burst noise signals near 60 Hz," IEEE Trans Power Del, 2, (2), pp. 342–348, 1987. 15. [15] Torres, V., Guardado, J.L., Ruiz, H.F., Maximov, S., “Modeling and detection of high impedance faults,” Int J Elec Power, 61, pp. 163–172, 2014. 16. [16] Kavi, M., Mishra, Y., Vilathgamuwa, M.D., “Highimpedance fault detection and classification in power system distribution networks using morphological fault detector algorithm,” IET Gener Transm Dis, 12, (15), pp. 3699–3710, 2018. 17. [17] Ghaderi, A., Ginn, H.L., Mohammadpour, H.A., “High impedance fault detection: A review,” Electr Pow Syst Res, 143, pp. 376–388, 2017. 18. [18] Faridnia, N., Samet, H., Doostani.Dezfuli, B., “A new approach to high impedance fault detection based on correlation functions,” In: Artificial Intelligence Applications and Innovations. (Berlin), pp. 453–462, 2012. 19. [19] Sarlak, M., Shahrtash, S.M., “Highimpedance faulted branch identification using magneticfield signature analysis,” IEEE Trans Power Del, 28, (1), pp. 67– 74, 2013. 20. [20] Mamishev, A.V., Russell, B.D., Benner, C.L., “Analysis of high impedance faults using fractal techniques,” In: Proceedings of Power Industry Computer Applications Conference, pp. 401–406, 1995. 21. [21] Sortomme, E., Venkata, S.S., Mitra, J., “Microgrid protection using communicationassisted digital relays,” IEEE Trans Power Del, 25, (4), pp. 2789–2796, 2010. 22. [22] Sheng, Y., Rovnyak, S.M., “Decision treebased methodology for high impedance fault detection,” IEEE Trans Power Del, 19, (2), pp. 533–536, 2004. 23. [23] Michalik, M., Lukowicz, M., Rebizant, W., Lee, S., Kang, S., “New ANNbased algorithms for detecting HIFs in multigrounded MV networks,” IEEE Trans Power Del, 23, (1), pp. 58–66, 2008. 24. [24] Etemadi, A.H., Sanaye Pasand, M., “Highimpedance fault detection using multiresolution signal decomposition and adaptive neural fuzzy inference system,” IET Gener Transm Dis, 2, (1), pp. 110–118, 2008. 25. [25] Samantaray, S.R., Dash, P.K., “High impedance fault detection in distribution feeders using extended kalman filter and support vector machine,” Eur T Electr Power, 20, (3), pp. 382–393, 2010. 26. [26] Sedighi, A.R., Haghifam, M.R., Malik, O.P., “Soft computing applications in high impedance fault detection in distribution systems,” Electr Pow Syst Res, 76, (1), pp. 136–144, 2005. 27. [27] Costa, F.B., Souza, B.A., Brito, N.S.D., Silva, J.A.C.B., Santos, W.C., “Realtime detection of transients induced by highimpedance faults based on the boundary wavelet transform,” IEEE Trans Ind Applicat, 51, (6), pp. 5312–5323, 2015. 28. [28] Elkalashy, N.I., Lehtonen, M., Darwish, H.A., Taalab, A.I., Izzularab, M.A., “DWTbased detection and transient power directionbased location of high impedance faults due to leaning trees in unearthed MV networks,” IEEE Trans Power Del, 23, (1), pp. 94–101, 2008. 29. [29] Elkalashy, N.I., Lehtonen, M., Darwish, H.A., Izzularab, M.A., Taalab, A.I., “Modeling and experimental verification of high impedance arcing fault in medium voltage networks,” IEEE T Dielect El In, 14, (2), pp. 375–383, 2007. 30. [30] AsghariGovar, S., Pourghasem, P., Seyedi, H., “High impedance fault protection scheme for smart grids based on WPT and ELM considering evolving and crosscountry faults,” Int J Elec Power, 107, pp. 412421, 2019. 31. [31] “Distribution test feeders”. IEEE PES Distribution System Analysis Subcommittee. [Online]. Available: http://sites.ieee.org/pestestfeeders/resources, 2000. 32. [32] Soheili, A., Sadeh, J., Bakhshi, R., “Modified FFT based high impedance fault detection technique considering distribution nonlinear loads: simulation and experimental data analysis,” Int J Elec Power, 94, pp. 124–140, 2018. 33. [33] M. Moher and T. A. Gulliver, “Crossentropy and iterative decoding,” IEEE T Inform Theory, 44 (7), pp. 30973104, 1998. 34. [34] Zamani, M.A., Yazdani, A., Sidhu, T.S., “A communicationassisted protection strategy for inverterbased mediumvoltage microgrids,” IEEE Trans Smart Grid, 3 (4), pp. 2088–2099, 2012.
