[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 1 (4-2025) ::
ieijqp 2025, 14(1): 55-66 Back to browse issues page
Decentralized load frequency control using backstepping method and fuzzy with supervisory control approach
Javad Ansari *1 , Alireza Abbasi2 , Mahmoud Zadehbagheri3
1- Department of Electrical Engineering, NM.C., Islamic Azad University, Noorabad Mamasani, Iran
2- Department of Electrical Engineering, Faculty of Engineering, Fasa University, Fasa
3- Department of Electrical Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran
Abstract:   (556 Views)
This paper proposes a new load frequency control (LFC) method for multi-area power systems using the backstepping algorithm and fuzzy control based on decentralized control strategy. At first, a backstepping controller is designed for the single-area system, and the stability of the method is proved by the Lyapunov method. In addition to, in order to rejects large disturbances and making the system more robust against parameters variations an optimal supplementary fuzzy controller is used for decentralized LFC. For optimal performance of the two controllers, the particle swarm optimization algorithm is used to obtain the control parameters of the two controllers. Coordination and switching between the two controllers is done by a supervisory control strategy. Finally, sseveral simulations are performed on one area system, three area system and four area system. The merits of the proposed scheme include faster response speed, stronger robustness against disturbances and system parameter variations over the state-of the-arts.
 
Keywords: load frequency control, fuzzy control, backward step control, supervisory control, Lyapunov method
Full-Text [PDF 1314 kb]   (79 Downloads)    
Type of Study: Applicable |
Received: 2024/05/24 | Accepted: 2024/11/24 | Published: 2025/04/30
References
1. Shankar, R., Pradhan, S., Chatterjee, K., & Mandal, R. (2017). A comprehensive state of the art literature survey on LFC mechanism for power system. Renewable and Sustainable Energy Reviews, 76, 1185-1207. [DOI:10.1016/j.rser.2017.02.064]
2. Ansari, J., Abbasi, A. R., & Ansari, R. (2024). An event-triggered approach for uncertain load frequency control using memory-based adaptive practical sliding mode control. Energy Reports, 11, 2473-2483. [DOI:10.1016/j.egyr.2024.02.012]
3. Kundur, P. (2007). Power system stability. Power system stability and control, 10(1), 7-1. [DOI:10.1201/9781420009248.sec2]
4. Rahmani, K., Kavousifard, F., & Abbasi, A. (2017). Consideration effect of wind farms on the network reconfiguration in the distribution systems in an uncertain environment. Journal of ExpErimEntal & thEorEtical artificial intElligEncE, 29(5), 995-1009. [DOI:10.1080/0952813X.2016.1270359]
5. Shiroei, M., & Ranjbar, A. M. (2014). Supervisory predictive control of power system load frequency control. International Journal of Electrical Power & Energy Systems, 61, 70-80. [DOI:10.1016/j.ijepes.2014.03.020]
6. Ansari, J., Homayounzade, M., & Abbasi, A. R. (2025). Innovative Load Frequency Control: Integrating Adaptive Backstepping and Disturbance Observers. IEEE Access. [DOI:10.1109/ACCESS.2025.3554141]
7. Pandey, S. K., Mohanty, S. R., & Kishor, N. (2013). A literature survey on load-frequency control for conventional and distribution generation power systems. Renewable and Sustainable Energy Reviews, 25, 318-334. [DOI:10.1016/j.rser.2013.04.029]
8. Kavousi-Fard, A., Abasi, A., Rezazade, H., & Ansari, J. (2015). An intelligent approach for optimal capacitor placement problem as a reliability reinforcement strategy. Journal of Intelligent & Fuzzy Systems, 29(5), 1857-1867. [DOI:10.3233/IFS-151664]
9. Farahani, M., Ganjefar, S., & Alizadeh, M. (2012). PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory & Applications, 6(13), 1984-1992. [DOI:10.1049/iet-cta.2011.0405]
10. Kavousi-Fard, A., Abbasi, A., & Baziar, A. (2014). A novel adaptive modified harmony search algorithm to solve multi-objective environmental/economic dispatch. Journal of Intelligent & Fuzzy Systems, 26(6), 2817-2823. [DOI:10.3233/IFS-130949]
11. Ansari, J., Homayounzade, M., & Abbasi, A. R. (2023). Load frequency control in power systems by a robust backstepping sliding mode controller design. Energy Reports, 10, 1287-1298. [DOI:10.1016/j.egyr.2023.08.008]
12. Tan, W. (2009). Unified tuning of PID load frequency controller for power systems via IMC. IEEE Transactions on power systems, 25(1), 341-350. [DOI:10.1109/TPWRS.2009.2036463]
13. Benysek, G., Bojarski, J., Smolenski, R., Jarnut, M., & Werminski, S. (2016). Application of stochastic decentralized active demand response (DADR) system for load frequency control. IEEE Transactions on Smart Grid, 9(2), 1055-1062. [DOI:10.1109/TSG.2016.2574891]
14. Tan, W. (2011). Decentralized load frequency controller analysis and tuning for multi-area power systems. Energy conversion and management, 52(5), 2015-2023. [DOI:10.1016/j.enconman.2010.12.011]
15. Kumari, N., & Jha, A. N. (2014, December). Frequency control of multi-area power system network using PSO based LQR. In 2014 6th IEEE Power India International Conference (PIICON) (pp. 1-6). IEEE. [DOI:10.1109/34084POWERI.2014.7117761]
16. Bensenouci, A., & Ghany, A. A. (2007, September). Mixed H∞/H 2 with pole-placement design of robust LMI-based output feedback controllers for multi-area load frequency control. In EUROCON 2007-The International Conference on" Computer as a Tool" (pp. 1561-1566). IEEE. [DOI:10.1109/EURCON.2007.4400287]
17. Yousef, H. A., Khalfan, A. K., Albadi, M. H., & Hosseinzadeh, N. (2014). Load frequency control of a multi-area power system: An adaptive fuzzy logic approach. IEEE transactions on power systems, 29(4), 1822-1830. [DOI:10.1109/TPWRS.2013.2297432]
18. Ma, M., Zhang, C., Liu, X., & Chen, H. (2016). Distributed model predictive load frequency control of the multi-area power system after deregulation. IEEE transactions on Industrial Electronics, 64(6), 5129-5139. [DOI:10.1109/TIE.2016.2613923]
19. Abbasi, A., & Seifi, A. (2009). Fast and perfect damping circuit for ferroresonance phenomena in coupling capacitor voltage transformers. Electric Power Components and Systems, 37(4), 393-402. [DOI:10.1080/15325000802548780]
20. Ramlal, C. J., Singh, A., Rocke, S., & Sutherland, M. (2019). Decentralized Fuzzy $ H_infty $-Iterative Learning LFC With Time-Varying Communication Delays and Parametric Uncertainties. IEEE Transactions on power systems, 34(6), 4718-4727. [DOI:10.1109/TPWRS.2019.2917613]
21. [evrani, H., Daneshmand, P. R., Babahajyani, P., Mitani, Y., & Hiyama, T. (2013). Intelligent LFC concerning high penetration of wind power: synthesis and real-time application. IEEE Transactions on Sustainable Energy, 5(2), 655-662. [DOI:10.1109/TSTE.2013.2290126]
22. Saxena, S., & Hote, Y. V. (2013). Load frequency control in power systems via internal model control scheme and model-order reduction. IEEE transactions on power systems, 28(3), 2749-2757. [DOI:10.1109/TPWRS.2013.2245349]
23. Cai, L., He, Z., & Hu, H. (2016). A new load frequency control method of multi-area power system via the viewpoints of port-Hamiltonian system and cascade system. IEEE Transactions on Power Systems, 32(3), 1689-1700. [DOI:10.1109/TPWRS.2016.2605007]
24. Al-Hamouz, Z., Al-Duwaish, H., & Al-Musabi, N. (2011). Optimal design of a sliding mode AGC controller: Application to a nonlinear interconnected model. Electric power systems research, 81(7), 1403-1409. [DOI:10.1016/j.epsr.2011.02.004]
25. Ansari, J., Abbasi, A. R., & Firouzi, B. B. (2022). Decentralized LMI-based event-triggered integral sliding mode LFC of power systems with disturbance observer. International Journal of Electrical Power & Energy Systems, 138, 107971. [DOI:10.1016/j.ijepes.2022.107971]
26. [iao, K., & Xu, Y. (2017). A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer. IEEE Transactions on industrial informatics, 14(7), 3076-3086. [DOI:10.1109/TII.2017.2771487]
27. Prasad, S., Purwar, S., & Kishor, N. (2016). H‐infinity based non‐linear sliding mode controller for frequency regulation in interconnected power systems with constant and time‐varying delays. IET Generation, Transmission & Distribution, 10(11), 2771-2784. [DOI:10.1049/iet-gtd.2015.1475]
28. Qian, D., Zhao, D., Yi, J., & Liu, X. (2013). Neural sliding-mode load frequency controller design of power systems. Neural Computing and Applications, 22, 279-286. [DOI:10.1007/s00521-011-0709-0]
29. Du, Z., Zhang, Y., Ni, Y., Shi, L., Yao, L., & Bazargan, M. (2009, July). COI-based backstepping sliding-mode emergency frequency control for interconnected AC/DC power systems. In 2009 IEEE Power & Energy Society General Meeting (pp. 1-6). IEEE. [DOI:10.1109/PES.2009.5275801]
30. Wu, Z., Wang, X., & Zhao, X. (2016). Backstepping terminal sliding mode control of DFIG for maximal wind energy captured. International Journal of Innovative Computing, Information and Control, 12(5), 1565-1579.
31. Dehkordi, N. M., Sadati, N., & Hamzeh, M. (2017). A backstepping high-order sliding mode voltage control strategy for an islanded microgrid with harmonic/interharmonic loads. Control Engineering Practice, 58, 150-160. [DOI:10.1016/j.conengprac.2016.10.008]
32. Krstic, M., Kokotovic, P. V., & Kanellakopoulos, I. (1995). Nonlinear and adaptive control design. John Wiley & Sons, Inc.
33. Zhang, Y., Liu, X., & Qu, B. (2017). Distributed model predictive load frequency control of multi-area power system with DFIGs. IEEE/CAA Journal of Automatica Sinica, 4(1), 125-135. [DOI:10.1109/JAS.2017.7510346]
34. Kavousi-Fard, A., Khorram-Nia, R., Rostami, M., & Abbasi, A. (2015). An smart stochastic approach to model plug-in hybrid electric vehicles charging effect in the optimal operation of micro-grids. Journal of Intelligent & Fuzzy Systems, 28(2), 835-842. [DOI:10.3233/IFS-141365]
35. Abbasi, A., Abbasi, S., Ansari, J., & Rahmani, E. (2015). Effect of plug-in electric vehicles demand on the renewable micro-grids. Journal of Intelligent & Fuzzy Systems, 29(5), 1957-1966. [DOI:10.3233/IFS-151674]
36. Ansari, J., Abbasi, A. R., Heydari, M. H., & Avazzadeh, Z. (2022). Simultaneous design of fuzzy PSS and fuzzy STATCOM controllers for power system stability enhancement. Alexandria Engineering Journal, 61(4), 2841-2850. [DOI:10.1016/j.aej.2021.08.007]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ansari J, Abbasi A, Zadehbagheri M. Decentralized load frequency control using backstepping method and fuzzy with supervisory control approach. ieijqp 2025; 14 (1) :55-66
URL: http://ieijqp.ir/article-1-998-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 1 (4-2025) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.08 seconds with 38 queries by YEKTAWEB 4714