The Allocation of Optimal Capacity of Solar Sources to Achieve the Maximum Penetration Rate and Improve the Voltage Profile in Distribution Systems
|
Ali Hosseini Kordkheili , Ali Ghasemi marzbali *1  |
|
|
Abstract: (1159 Views) |
The problem of determining the optimal capacity and location of distributed generation resources is one of the important topics in the design and operation of power systems. To address this issue, this paper proposes a multi-objective developed model for optimal allocation of solar resources in radial distribution systems based on objective functions such as improving voltage profile, reducing losses, and maximizing penetration level. The optimal values, in other words, the capacity of solar resources to meet the optimal voltage profile and minimize losses under high penetration levels of these resources, have been obtained. Since these objectives are conflicting, a multi-objective developed algorithm called Gray Wolf Optimizer has been proposed to solve them simultaneously. Compared to other multi-objective problem-solving methods, the proposed Gray Wolf Optimizer demonstrates a high capability in solving multi-objective problems and finding Pareto fronts, while avoiding local optima. Additionally, in order to enhance the capabilities of the Gray Wolf Optimizer, a social hierarchy-based modified method has been employed to reduce solution time and improve the allocation matrix. Finally, the proposed method and the intended model have been evaluated on a standard system under various operating conditions. The obtained results show that the proposed method has been able to maintain an acceptable voltage profile and significantly reduce losses compared to other multi-objective algorithms. For low to medium penetration levels, losses tend to decrease until reaching a minimum value, and for penetration levels above 100%, losses increase. Furthermore, at a penetration level of 300%, the efficiency of the system has improved by about 12% in terms of voltage profile using the optimal allocation, indicating the excellent efficiency of the proposed method even at high penetration levels. Additionally, it has been demonstrated that in comparison to other multi-objective optimization methods, the proposed method has performed well in terms of the inverted generational distance parameter.
|
Article number: 5 |
Keywords: penetration rate, solar system, power loss, voltage profile, optimizer. |
|
Full-Text [PDF 1425 kb]
(191 Downloads)
|
Type of Study: Research |
Subject:
Special Received: 2022/09/10 | Accepted: 2023/04/25 | Published: 2023/08/1
|
|
|
|
|
References |
1. [1] Ehsan, A., & Yang, Q. (2019). Active distribution system reinforcement planning with EV charging stations-Part I: Uncertainty modeling and problem formulation. IEEE Transactions on Sustainable Energy, 11(2), 970-978. [ DOI:10.1109/TSTE.2019.2915338] 2. [2] Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., & Wu, J. (2017). Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Transactions on Sustainable Energy, 8(4), 1430-1442. [ DOI:10.1109/TSTE.2017.2686009] 3. [3] Argüello, A., Lara, J. D., Rojas, J. D., & Valverde, G. (2017). Impact of rooftop PV integration in distribution systems considering socioeconomic factors. IEEE Systems Journal, 12(4), 3531-3542. [ DOI:10.1109/JSYST.2017.2739022] 4. [4] Elkadeem, M. R., Abd Elaziz, M., Ullah, Z., Wang, S., & Sharshir, S. W. (2019). Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access, 7, 164887-164907. [ DOI:10.1109/ACCESS.2019.2947308] 5. [5] Zhuang, P., Zamir, T., & Liang, H. (2020). Blockchain for cybersecurity in smart grid: A comprehensive survey. IEEE Transactions on Industrial Informatics, 17(1), 3-19. [ DOI:10.1109/TII.2020.2998479] 6. [6] Erdinç, O., Taşcıkaraolu, A., Paterakis, N. G., Dursun, I., Sinim, M. C., & Catalao, J. P. (2017). Comprehensive optimization model for sizing and siting of DG units, EV charging stations, and energy storage systems. IEEE Transactions on Smart Grid, 9(4), 3871-3882. [ DOI:10.1109/TSG.2017.2777738] 7. [7] Ferruzzi, G., Cervone, G., Delle Monache, L., Graditi, G., & Jacobone, F. (2016). Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production. Energy, 106, 194-202. [ DOI:10.1016/j.energy.2016.02.166] 8. [8] Li, P., Ji, J., Ji, H., Jian, J., Ding, F., Wu, J., & Wang, C. (2020). MPC-based local voltage control strategy of DGs in active distribution networks. IEEE Transactions on Sustainable Energy, 11(4), 2911-2921. [ DOI:10.1109/TSTE.2020.2981486] 9. [9] Truong, K. H., Nallagownden, P., Elamvazuthi, I., & Vo, D. N. (2020). A quasi-oppositional-chaotic symbiotic organisms search algorithm for optimal allocation of DG in radial distribution networks. Applied Soft Computing, 88, 106067. [ DOI:10.1016/j.asoc.2020.106067] 10. [10] Naghdi, M., Shafiyi, M. A., & Haghifam, M. R. (2019). A combined probabilistic modeling of renewable generation and system load types to determine allowable DG penetration level in distribution networks. International Transactions on Electrical Energy Systems, 29(1), e2696. [ DOI:10.1002/etep.2696] 11. [11] Hu, L., Liu, K. Y., Sheng, W., Diao, Y., & Jia, D. (2017). Research on maximum allowable capacity of distributed generation in distributed network under global energy internet considering static voltage stability. The Journal of Engineering, 2017(13), 2276-2280. [ DOI:10.1049/joe.2017.0736] 12. [12] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 13. [13] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 14. [14] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 15. [15] Essackjee, I. A., & King, R. T. A. (2016, August). The impact of increasing Penetration Level of Small Scale Distributed Generations on voltage in a secondary distribution network. In 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 245-250). IEEE. [ DOI:10.1109/EmergiTech.2016.7737347] 16. [16] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 17. [17] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 18. [18] Chamana, M., & Chowdhury, B. H. (2018). Optimal voltage regulation of distribution networks with cascaded voltage regulators in the presence of high PV penetration. IEEE Transactions on Sustainable Energy, 9(3), 1427-1436.. [ DOI:10.1109/TSTE.2017.2788869] 19. [19] Guo, Y., Wu, Q., Gao, H., Chen, X., Østergaard, J., & Xin, H. (2018). MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system. IEEE Transactions on Sustainable Energy, 10(4), 1731-1739. [ DOI:10.1109/TSTE.2018.2869932] 20. [20] Jamroen, C., Pannawan, A., & Sirisukprasert, S. (2018, September). Battery energy storage system control for voltage regulation in microgrid with high penetration of PV generation. In 2018 53rd International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE. [ DOI:10.1109/UPEC.2018.8541888] 21. [21] Nguyen, T. A., Rigo-Mariani, R., Ortega-Vazquez, M. A., & Kirschen, D. S. (2018, August). Voltage Regulation in Distribution Grid Using PV Smart Inverters. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. [ DOI:10.1109/PESGM.2018.8586453] 22. [22] Cui, T., Shen, Y., Liang, L., Zhang, B., Guo, H., & Zuo, J. (2018, November). Real-time voltage regulation of distributed power grids with wind power integration. In 2018 International Conference on Power System Technology (POWERCON) (pp. 2102-2107). IEEE. [ DOI:10.1109/POWERCON.2018.8602299] 23. [23] Liu, J., Li, Y., Rehtanz, C., Cao, Y., Qiao, X., Lin, G., ... & Sun, C. (2019). An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations. International Journal of Electrical Power & Energy Systems, 113, 991-1001. [ DOI:10.1016/j.ijepes.2019.06.030] 24. [24] Montoya, O. D., Grisales-Noreña, L. F., Gil-González, W., Alcalá, G., & Hernandez-Escobedo, Q. (2020). Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry, 12(2), 322. [ DOI:10.3390/sym12020322] 25. [25] Cheng, Y., Zhang, N., Kirschen, D. S., Huang, W., & Kang, C. (2020). Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. Applied Energy, 261, 114390. [ DOI:10.1016/j.apenergy.2019.114390] 26. [26] Ma, C., Menke, J. H., Dasenbrock, J., Braun, M., Haslbeck, M., & Schmid, K. H. (2019). Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation. Applied Energy, 256, 113907. [ DOI:10.1016/j.apenergy.2019.113907] 27. [27] Li, K., Wang, F., Mi, Z., Fotuhi-Firuzabad, M., Duić, N., & Wang, T. (2019). Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation. Applied Energy, 253, 113595. [ DOI:10.1016/j.apenergy.2019.113595] 28. [28] Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2020). An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal, 11(2), 409-418. [ DOI:10.1016/j.asej.2019.08.011] 29. [29] Swief, R. A., & El-Amary, N. H. (2020). Optimal probabilistic reliable hybrid allocation for system reconfiguration applying WT/PV and reclosures. Ain Shams Engineering Journal, 11(1), 109-118. [ DOI:10.1016/j.asej.2019.09.010] 30. [30] Ali, A., Raisz, D., Mahmoud, K., & Lehtonen, M. (2019). Optimal placement and sizing of uncertain PVs considering stochastic nature of PEVs. IEEE Transactions on Sustainable Energy, 11(3), 1647-1656. [ DOI:10.1109/TSTE.2019.2935349] 31. [31] Yahiaoui, A., Benmansour, K., & Tadjine, M. (2016). Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Solar Energy, 137, 1-10. [ DOI:10.1016/j.solener.2016.07.050] 32. [32] EEriksson, E. L. V., & Gray, E. M. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review. Applied energy, 202, 348-364. [ DOI:10.1016/j.apenergy.2017.03.132] 33. [33] Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2012). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE transactions on power systems, 28(1), 317-325. [ DOI:10.1109/TPWRS.2012.2197227] 34. [34] Tolabi, H. B., Ali, M. H., & Rizwan, M. (2014). Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Transactions on sustainable Energy, 6(1), 210-218. [ DOI:10.1109/TSTE.2014.2364230] 35. [35] Aman, M. M., Jasmon, G. B., Bakar, A. H. A., Mokhlis, H., & Karimi, M. (2014). Optimum shunt capacitor placement in distribution system-A review and comparative study. Renewable and Sustainable Energy Reviews, 30, 429-439. [ DOI:10.1016/j.rser.2013.10.002] 36. [36] Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106-119. [ DOI:10.1016/j.eswa.2015.10.039] 37. [37] Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381. [ DOI:10.1016/j.neucom.2015.06.083] 38. [38] Jayakumar, N., Subramanian, S., Ganesan, S., Elanchezhian, E.B., 2016. Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int. J. Electr. Power Energy Syst. 74, 252-264 [ DOI:10.1016/j.ijepes.2015.07.031] 39. [39] Lu, C., Xiao, S., Li, X., Gao, L., 2016. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Adv. Eng. Softw. 99, 161-176. [ DOI:10.1016/j.advengsoft.2016.06.004] 40. [40]Precup, R.E., David, R.C., Petriu, E.M., 2016b. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electron. [ DOI:10.1109/TIE.2016.2607698] 41. [41] Wazir, A., & Arbab, N. (2016). Analysis and optimization of IEEE 33 bus radial distributed system using optimization algorithm. Journal of Emerging Trends in Applied Engineering, 1(2), 17-21. 42. [42] Nor, N. M., Ali, A., Ibrahim, T., & Romlie, M. F. (2017). Battery storage for the utility-scale distributed photovoltaic generations. IEEE Access, 6, 1137-1154. [ DOI:10.1109/ACCESS.2017.2778004] 43. [43] Olowu, T. O., Sundararajan, A., Moghaddami, M., & Sarwat, A. I. (2018). Future challenges and mitigation methods for high photovoltaic penetration: A survey. Energies, 11(7), 1782. [ DOI:10.3390/en11071782] 44. [44] Cheng, D., Mather, B. A., Seguin, R., Hambrick, J., & Broadwater, R. P. (2015). Photovoltaic (PV) impact assessment for very high penetration levels. IEEE Journal of photovoltaics, 6(1), 295-300. [ DOI:10.1109/JPHOTOV.2015.2481605] 45. [45] Hraiz, M. D., García, J. A. M., Castañeda, R. J., & Muhsen, H. (2020). Optimal PV size and location to reduce active power losses while achieving very high penetration level with improvement in voltage profile using modified Jaya algorithm. IEEE Journal of Photovoltaics, 10(4), 1166-1174. [ DOI:10.1109/JPHOTOV.2020.2995580] 46. [1] Ehsan, A., & Yang, Q. (2019). Active distribution system reinforcement planning with EV charging stations-Part I: Uncertainty modeling and problem formulation. IEEE Transactions on Sustainable Energy, 11(2), 970-978. [ DOI:10.1109/TSTE.2019.2915338] 47. [2] Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., & Wu, J. (2017). Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Transactions on Sustainable Energy, 8(4), 1430-1442. [ DOI:10.1109/TSTE.2017.2686009] 48. [3] Argüello, A., Lara, J. D., Rojas, J. D., & Valverde, G. (2017). Impact of rooftop PV integration in distribution systems considering socioeconomic factors. IEEE Systems Journal, 12(4), 3531-3542. [ DOI:10.1109/JSYST.2017.2739022] 49. [4] Elkadeem, M. R., Abd Elaziz, M., Ullah, Z., Wang, S., & Sharshir, S. W. (2019). Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access, 7, 164887-164907. [ DOI:10.1109/ACCESS.2019.2947308] 50. [5] Zhuang, P., Zamir, T., & Liang, H. (2020). Blockchain for cybersecurity in smart grid: A comprehensive survey. IEEE Transactions on Industrial Informatics, 17(1), 3-19. [ DOI:10.1109/TII.2020.2998479] 51. [6] Erdinç, O., Taşcıkaraolu, A., Paterakis, N. G., Dursun, I., Sinim, M. C., & Catalao, J. P. (2017). Comprehensive optimization model for sizing and siting of DG units, EV charging stations, and energy storage systems. IEEE Transactions on Smart Grid, 9(4), 3871-3882. [ DOI:10.1109/TSG.2017.2777738] 52. [7] Ferruzzi, G., Cervone, G., Delle Monache, L., Graditi, G., & Jacobone, F. (2016). Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production. Energy, 106, 194-202. [ DOI:10.1016/j.energy.2016.02.166] 53. [8] Li, P., Ji, J., Ji, H., Jian, J., Ding, F., Wu, J., & Wang, C. (2020). MPC-based local voltage control strategy of DGs in active distribution networks. IEEE Transactions on Sustainable Energy, 11(4), 2911-2921. [ DOI:10.1109/TSTE.2020.2981486] 54. [9] Truong, K. H., Nallagownden, P., Elamvazuthi, I., & Vo, D. N. (2020). A quasi-oppositional-chaotic symbiotic organisms search algorithm for optimal allocation of DG in radial distribution networks. Applied Soft Computing, 88, 106067. [ DOI:10.1016/j.asoc.2020.106067] 55. [10] Naghdi, M., Shafiyi, M. A., & Haghifam, M. R. (2019). A combined probabilistic modeling of renewable generation and system load types to determine allowable DG penetration level in distribution networks. International Transactions on Electrical Energy Systems, 29(1), e2696. [ DOI:10.1002/etep.2696] 56. [11] Hu, L., Liu, K. Y., Sheng, W., Diao, Y., & Jia, D. (2017). Research on maximum allowable capacity of distributed generation in distributed network under global energy internet considering static voltage stability. The Journal of Engineering, 2017(13), 2276-2280. [ DOI:10.1049/joe.2017.0736] 57. [12] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 58. [13] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 59. [14] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 60. [15] Essackjee, I. A., & King, R. T. A. (2016, August). The impact of increasing Penetration Level of Small Scale Distributed Generations on voltage in a secondary distribution network. In 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 245-250). IEEE. [ DOI:10.1109/EmergiTech.2016.7737347] 61. [16] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 62. [17] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [ DOI:10.1109/EPDC.2017.8012763] 63. [18] Chamana, M., & Chowdhury, B. H. (2018). Optimal voltage regulation of distribution networks with cascaded voltage regulators in the presence of high PV penetration. IEEE Transactions on Sustainable Energy, 9(3), 1427-1436.. [ DOI:10.1109/TSTE.2017.2788869] 64. [19] Guo, Y., Wu, Q., Gao, H., Chen, X., Østergaard, J., & Xin, H. (2018). MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system. IEEE Transactions on Sustainable Energy, 10(4), 1731-1739. [ DOI:10.1109/TSTE.2018.2869932] 65. [20] Jamroen, C., Pannawan, A., & Sirisukprasert, S. (2018, September). Battery energy storage system control for voltage regulation in microgrid with high penetration of PV generation. In 2018 53rd International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE. [ DOI:10.1109/UPEC.2018.8541888] 66. [21] Nguyen, T. A., Rigo-Mariani, R., Ortega-Vazquez, M. A., & Kirschen, D. S. (2018, August). Voltage Regulation in Distribution Grid Using PV Smart Inverters. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. [ DOI:10.1109/PESGM.2018.8586453] 67. [22] Cui, T., Shen, Y., Liang, L., Zhang, B., Guo, H., & Zuo, J. (2018, November). Real-time voltage regulation of distributed power grids with wind power integration. In 2018 International Conference on Power System Technology (POWERCON) (pp. 2102-2107). IEEE. [ DOI:10.1109/POWERCON.2018.8602299] 68. [23] Liu, J., Li, Y., Rehtanz, C., Cao, Y., Qiao, X., Lin, G., ... & Sun, C. (2019). An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations. International Journal of Electrical Power & Energy Systems, 113, 991-1001. [ DOI:10.1016/j.ijepes.2019.06.030] 69. [24] Montoya, O. D., Grisales-Noreña, L. F., Gil-González, W., Alcalá, G., & Hernandez-Escobedo, Q. (2020). Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry, 12(2), 322. [ DOI:10.3390/sym12020322] 70. [25] Cheng, Y., Zhang, N., Kirschen, D. S., Huang, W., & Kang, C. (2020). Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. Applied Energy, 261, 114390. [ DOI:10.1016/j.apenergy.2019.114390] 71. [26] Ma, C., Menke, J. H., Dasenbrock, J., Braun, M., Haslbeck, M., & Schmid, K. H. (2019). Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation. Applied Energy, 256, 113907. [ DOI:10.1016/j.apenergy.2019.113907] 72. [27] Li, K., Wang, F., Mi, Z., Fotuhi-Firuzabad, M., Duić, N., & Wang, T. (2019). Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation. Applied Energy, 253, 113595. [ DOI:10.1016/j.apenergy.2019.113595] 73. [28] Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2020). An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal, 11(2), 409-418. [ DOI:10.1016/j.asej.2019.08.011] 74. [29] Swief, R. A., & El-Amary, N. H. (2020). Optimal probabilistic reliable hybrid allocation for system reconfiguration applying WT/PV and reclosures. Ain Shams Engineering Journal, 11(1), 109-118. [ DOI:10.1016/j.asej.2019.09.010] 75. [30] Ali, A., Raisz, D., Mahmoud, K., & Lehtonen, M. (2019). Optimal placement and sizing of uncertain PVs considering stochastic nature of PEVs. IEEE Transactions on Sustainable Energy, 11(3), 1647-1656. [ DOI:10.1109/TSTE.2019.2935349] 76. [31] Yahiaoui, A., Benmansour, K., & Tadjine, M. (2016). Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Solar Energy, 137, 1-10. [ DOI:10.1016/j.solener.2016.07.050] 77. [32] EEriksson, E. L. V., & Gray, E. M. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review. Applied energy, 202, 348-364. [ DOI:10.1016/j.apenergy.2017.03.132] 78. [33] Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2012). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE transactions on power systems, 28(1), 317-325. [ DOI:10.1109/TPWRS.2012.2197227] 79. [34] Tolabi, H. B., Ali, M. H., & Rizwan, M. (2014). Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Transactions on sustainable Energy, 6(1), 210-218. [ DOI:10.1109/TSTE.2014.2364230] 80. [35] Aman, M. M., Jasmon, G. B., Bakar, A. H. A., Mokhlis, H., & Karimi, M. (2014). Optimum shunt capacitor placement in distribution system-A review and comparative study. Renewable and Sustainable Energy Reviews, 30, 429-439. [ DOI:10.1016/j.rser.2013.10.002] 81. [36] Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106-119. [ DOI:10.1016/j.eswa.2015.10.039] 82. [37] Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381. [ DOI:10.1016/j.neucom.2015.06.083] 83. [38] Jayakumar, N., Subramanian, S., Ganesan, S., Elanchezhian, E.B., 2016. Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int. J. Electr. Power Energy Syst. 74, 252-264 [ DOI:10.1016/j.ijepes.2015.07.031] 84. [39] Lu, C., Xiao, S., Li, X., Gao, L., 2016. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Adv. Eng. Softw. 99, 161-176. [ DOI:10.1016/j.advengsoft.2016.06.004] 85. [40]Precup, R.E., David, R.C., Petriu, E.M., 2016b. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electron. [ DOI:10.1109/TIE.2016.2607698] 86. [41] Wazir, A., & Arbab, N. (2016). Analysis and optimization of IEEE 33 bus radial distributed system using optimization algorithm. Journal of Emerging Trends in Applied Engineering, 1(2), 17-21. 87. [42] Nor, N. M., Ali, A., Ibrahim, T., & Romlie, M. F. (2017). Battery storage for the utility-scale distributed photovoltaic generations. IEEE Access, 6, 1137-1154. [ DOI:10.1109/ACCESS.2017.2778004] 88. [43] Olowu, T. O., Sundararajan, A., Moghaddami, M., & Sarwat, A. I. (2018). Future challenges and mitigation methods for high photovoltaic penetration: A survey. Energies, 11(7), 1782. [ DOI:10.3390/en11071782] 89. [44] Cheng, D., Mather, B. A., Seguin, R., Hambrick, J., & Broadwater, R. P. (2015). Photovoltaic (PV) impact assessment for very high penetration levels. IEEE Journal of photovoltaics, 6(1), 295-300. [ DOI:10.1109/JPHOTOV.2015.2481605] 90. [45] Hraiz, M. D., García, J. A. M., Castañeda, R. J., & Muhsen, H. (2020). Optimal PV size and location to reduce active power losses while achieving very high penetration level with improvement in voltage profile using modified Jaya algorithm. IEEE Journal of Photovoltaics, 10(4), 1166-1174. [ DOI:10.1109/JPHOTOV.2020.2995580]
|
|
Hosseini Kordkheili A, ghasemi marzbali A. The Allocation of Optimal Capacity of Solar Sources to Achieve the Maximum Penetration Rate and Improve the Voltage Profile in Distribution Systems. ieijqp 2023; 12 (2) : 5 URL: http://ieijqp.ir/article-1-954-en.html
|