[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 12، شماره 2 - ( 5-1402 ) ::
جلد 12 شماره 2 صفحات 70-57 برگشت به فهرست نسخه ها
تخصیص ظرفیت مطلوب منابع خورشیدی به منظور دستیابی به حداکثرسطح نفوذ و بهبود پروفایل ولتاژ در سیستم های توزیع
علی کرد خیلی1، علی قاسمی مرزبالی* 1
1- گروه مهندسی برق و پزشکی- دانشگاه علوم و فنون مازندران- بابل- ایران
چکیده:   (286 مشاهده)

مساله تعیین ظرفیت و موقعیت بهینه منابع تولید پراکنده یکی از موضوعات بااهمیت در طراحی و بهره‌برداری از سیستم‌های قدرت می‌باشد. برای پوشش دادن به این موضوع، در این مقاله یک مدل جدید چندهدفه برای تخصیص بهینه منابع خورشیدی در سیستم‌های توزیع شعاعی مبتنی بر توابع اهدافی مانند بهبود پروفیل ولتاژ، کاهش تلفات و حداکثرسازی سطح نفوذ پیشنهاد شده است. مقادیر بهینه به عبارتی، ظرفیت منابع خورشیدی جهت برآورده نمودن پروفایل ولتاژ بهینه و تلفات کمینه تحت سطوح نفوذ بالای این منابع به دست آمده است. نظر به اینکه، این توابع در تضاد یکدیگر بوده، برای حل همزمان آنها یک الگوریتم توسعه یافته چند هدفه گرگ خاکستری پیشنهاد شده است. نسبت به سایر روش‌های حل مسائل چندهدفه، روش بهینه‌سازی چندهدفه گرگ خاکستری پیشنهادی قابلیت بسیار بالایی در حل مسائل چندهدفه و یافتن جبهه‌های پارتو دارد و از قرار گرفتن در بهینگی‌های محلی جلوگیری می‌نماید. علاوه بر این به منظور ارتقای قابلیت‌های روش گرگ خاکستری از روش سلسله مراتبی اجتماعی تصحیح شده برای کاهش زمان حل و بهبود ماتریس تخصیص استفاده شده است. در نهایت، روش پیشنهادی و مدل مورد نظر بر روی یک سیستم استاندارد در شرایط کاری مختلف مورد ارزیابی قرار گرفته است. نتایج به دست آمده نشان داده که روش پیشنهادی در مقایسه با سایر الگوریتم های چند هدفه توانسته پروفیل ولتاژ را در حد قابل قبولی نگه داشته و تلفات را به صورت قابل ملاحظه ای کاهش دهد. برای سطوح نفوذ کم تا متوسط، تلفات تمایل به کاهش یافتن تا رسیدن به مینیمم مقدار را داشته و برای سطوح نفوذ بالاتر از 100 درصد، تلفات افزایش می‌یابد. همچنین در سطح نفوذ 300 درصد کارائی سیستم از منظر پروفایل ولتاژ با استفاده از تخصیص بهینه حدود 12 درصد بهبود یافته است که این نشانگر کارائی بسیار مناسب روش پیشنهادی حتی در سطوح نفوذ بالا می باشد. علاوه بر این اثبات گردید در مقایسه با سایر روش‌های بهینه‌سازی چندهدفه روش پیشنهادی دارای عملکرد مناسبی از منظر پارامتر فاصله نسل معکوس بوده است.

شماره‌ی مقاله: 5
واژه‌های کلیدی: سطح نفوذ، سیستم خورشیدی، تلفات خطوط انتقال، پروفایل ولتاژ، بهینه سازی.
متن کامل [PDF 1425 kb]   (29 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/6/19 | پذیرش: 1402/2/5 | انتشار: 1402/5/10
فهرست منابع
1. [1] Ehsan, A., & Yang, Q. (2019). Active distribution system reinforcement planning with EV charging stations-Part I: Uncertainty modeling and problem formulation. IEEE Transactions on Sustainable Energy, 11(2), 970-978. [DOI:10.1109/TSTE.2019.2915338]
2. [2] Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., & Wu, J. (2017). Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Transactions on Sustainable Energy, 8(4), 1430-1442. [DOI:10.1109/TSTE.2017.2686009]
3. [3] Argüello, A., Lara, J. D., Rojas, J. D., & Valverde, G. (2017). Impact of rooftop PV integration in distribution systems considering socioeconomic factors. IEEE Systems Journal, 12(4), 3531-3542. [DOI:10.1109/JSYST.2017.2739022]
4. [4] Elkadeem, M. R., Abd Elaziz, M., Ullah, Z., Wang, S., & Sharshir, S. W. (2019). Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access, 7, 164887-164907. [DOI:10.1109/ACCESS.2019.2947308]
5. [5] Zhuang, P., Zamir, T., & Liang, H. (2020). Blockchain for cybersecurity in smart grid: A comprehensive survey. IEEE Transactions on Industrial Informatics, 17(1), 3-19. [DOI:10.1109/TII.2020.2998479]
6. [6] Erdinç, O., Taşcıkaraolu, A., Paterakis, N. G., Dursun, I., Sinim, M. C., & Catalao, J. P. (2017). Comprehensive optimization model for sizing and siting of DG units, EV charging stations, and energy storage systems. IEEE Transactions on Smart Grid, 9(4), 3871-3882. [DOI:10.1109/TSG.2017.2777738]
7. [7] Ferruzzi, G., Cervone, G., Delle Monache, L., Graditi, G., & Jacobone, F. (2016). Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production. Energy, 106, 194-202. [DOI:10.1016/j.energy.2016.02.166]
8. [8] Li, P., Ji, J., Ji, H., Jian, J., Ding, F., Wu, J., & Wang, C. (2020). MPC-based local voltage control strategy of DGs in active distribution networks. IEEE Transactions on Sustainable Energy, 11(4), 2911-2921. [DOI:10.1109/TSTE.2020.2981486]
9. [9] Truong, K. H., Nallagownden, P., Elamvazuthi, I., & Vo, D. N. (2020). A quasi-oppositional-chaotic symbiotic organisms search algorithm for optimal allocation of DG in radial distribution networks. Applied Soft Computing, 88, 106067. [DOI:10.1016/j.asoc.2020.106067]
10. [10] Naghdi, M., Shafiyi, M. A., & Haghifam, M. R. (2019). A combined probabilistic modeling of renewable generation and system load types to determine allowable DG penetration level in distribution networks. International Transactions on Electrical Energy Systems, 29(1), e2696. [DOI:10.1002/etep.2696]
11. [11] Hu, L., Liu, K. Y., Sheng, W., Diao, Y., & Jia, D. (2017). Research on maximum allowable capacity of distributed generation in distributed network under global energy internet considering static voltage stability. The Journal of Engineering, 2017(13), 2276-2280. [DOI:10.1049/joe.2017.0736]
12. [12] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
13. [13] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
14. [14] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
15. [15] Essackjee, I. A., & King, R. T. A. (2016, August). The impact of increasing Penetration Level of Small Scale Distributed Generations on voltage in a secondary distribution network. In 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 245-250). IEEE. [DOI:10.1109/EmergiTech.2016.7737347]
16. [16] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
17. [17] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
18. [18] Chamana, M., & Chowdhury, B. H. (2018). Optimal voltage regulation of distribution networks with cascaded voltage regulators in the presence of high PV penetration. IEEE Transactions on Sustainable Energy, 9(3), 1427-1436.. [DOI:10.1109/TSTE.2017.2788869]
19. [19] Guo, Y., Wu, Q., Gao, H., Chen, X., Østergaard, J., & Xin, H. (2018). MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system. IEEE Transactions on Sustainable Energy, 10(4), 1731-1739. [DOI:10.1109/TSTE.2018.2869932]
20. [20] Jamroen, C., Pannawan, A., & Sirisukprasert, S. (2018, September). Battery energy storage system control for voltage regulation in microgrid with high penetration of PV generation. In 2018 53rd International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE. [DOI:10.1109/UPEC.2018.8541888]
21. [21] Nguyen, T. A., Rigo-Mariani, R., Ortega-Vazquez, M. A., & Kirschen, D. S. (2018, August). Voltage Regulation in Distribution Grid Using PV Smart Inverters. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. [DOI:10.1109/PESGM.2018.8586453]
22. [22] Cui, T., Shen, Y., Liang, L., Zhang, B., Guo, H., & Zuo, J. (2018, November). Real-time voltage regulation of distributed power grids with wind power integration. In 2018 International Conference on Power System Technology (POWERCON) (pp. 2102-2107). IEEE. [DOI:10.1109/POWERCON.2018.8602299]
23. [23] Liu, J., Li, Y., Rehtanz, C., Cao, Y., Qiao, X., Lin, G., ... & Sun, C. (2019). An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations. International Journal of Electrical Power & Energy Systems, 113, 991-1001. [DOI:10.1016/j.ijepes.2019.06.030]
24. [24] Montoya, O. D., Grisales-Noreña, L. F., Gil-González, W., Alcalá, G., & Hernandez-Escobedo, Q. (2020). Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry, 12(2), 322. [DOI:10.3390/sym12020322]
25. [25] Cheng, Y., Zhang, N., Kirschen, D. S., Huang, W., & Kang, C. (2020). Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. Applied Energy, 261, 114390. [DOI:10.1016/j.apenergy.2019.114390]
26. [26] Ma, C., Menke, J. H., Dasenbrock, J., Braun, M., Haslbeck, M., & Schmid, K. H. (2019). Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation. Applied Energy, 256, 113907. [DOI:10.1016/j.apenergy.2019.113907]
27. [27] Li, K., Wang, F., Mi, Z., Fotuhi-Firuzabad, M., Duić, N., & Wang, T. (2019). Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation. Applied Energy, 253, 113595. [DOI:10.1016/j.apenergy.2019.113595]
28. [28] Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2020). An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal, 11(2), 409-418. [DOI:10.1016/j.asej.2019.08.011]
29. [29] Swief, R. A., & El-Amary, N. H. (2020). Optimal probabilistic reliable hybrid allocation for system reconfiguration applying WT/PV and reclosures. Ain Shams Engineering Journal, 11(1), 109-118. [DOI:10.1016/j.asej.2019.09.010]
30. [30] Ali, A., Raisz, D., Mahmoud, K., & Lehtonen, M. (2019). Optimal placement and sizing of uncertain PVs considering stochastic nature of PEVs. IEEE Transactions on Sustainable Energy, 11(3), 1647-1656. [DOI:10.1109/TSTE.2019.2935349]
31. [31] Yahiaoui, A., Benmansour, K., & Tadjine, M. (2016). Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Solar Energy, 137, 1-10. [DOI:10.1016/j.solener.2016.07.050]
32. [32] EEriksson, E. L. V., & Gray, E. M. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review. Applied energy, 202, 348-364. [DOI:10.1016/j.apenergy.2017.03.132]
33. [33] Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2012). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE transactions on power systems, 28(1), 317-325. [DOI:10.1109/TPWRS.2012.2197227]
34. [34] Tolabi, H. B., Ali, M. H., & Rizwan, M. (2014). Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Transactions on sustainable Energy, 6(1), 210-218. [DOI:10.1109/TSTE.2014.2364230]
35. [35] Aman, M. M., Jasmon, G. B., Bakar, A. H. A., Mokhlis, H., & Karimi, M. (2014). Optimum shunt capacitor placement in distribution system-A review and comparative study. Renewable and Sustainable Energy Reviews, 30, 429-439. [DOI:10.1016/j.rser.2013.10.002]
36. [36] Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106-119. [DOI:10.1016/j.eswa.2015.10.039]
37. [37] Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381. [DOI:10.1016/j.neucom.2015.06.083]
38. [38] Jayakumar, N., Subramanian, S., Ganesan, S., Elanchezhian, E.B., 2016. Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int. J. Electr. Power Energy Syst. 74, 252-264 [DOI:10.1016/j.ijepes.2015.07.031]
39. [39] Lu, C., Xiao, S., Li, X., Gao, L., 2016. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Adv. Eng. Softw. 99, 161-176. [DOI:10.1016/j.advengsoft.2016.06.004]
40. [40]Precup, R.E., David, R.C., Petriu, E.M., 2016b. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electron. [DOI:10.1109/TIE.2016.2607698]
41. [41] Wazir, A., & Arbab, N. (2016). Analysis and optimization of IEEE 33 bus radial distributed system using optimization algorithm. Journal of Emerging Trends in Applied Engineering, 1(2), 17-21.
42. [42] Nor, N. M., Ali, A., Ibrahim, T., & Romlie, M. F. (2017). Battery storage for the utility-scale distributed photovoltaic generations. IEEE Access, 6, 1137-1154. [DOI:10.1109/ACCESS.2017.2778004]
43. [43] Olowu, T. O., Sundararajan, A., Moghaddami, M., & Sarwat, A. I. (2018). Future challenges and mitigation methods for high photovoltaic penetration: A survey. Energies, 11(7), 1782. [DOI:10.3390/en11071782]
44. [44] Cheng, D., Mather, B. A., Seguin, R., Hambrick, J., & Broadwater, R. P. (2015). Photovoltaic (PV) impact assessment for very high penetration levels. IEEE Journal of photovoltaics, 6(1), 295-300. [DOI:10.1109/JPHOTOV.2015.2481605]
45. [45] Hraiz, M. D., García, J. A. M., Castañeda, R. J., & Muhsen, H. (2020). Optimal PV size and location to reduce active power losses while achieving very high penetration level with improvement in voltage profile using modified Jaya algorithm. IEEE Journal of Photovoltaics, 10(4), 1166-1174. [DOI:10.1109/JPHOTOV.2020.2995580]
46. [1] Ehsan, A., & Yang, Q. (2019). Active distribution system reinforcement planning with EV charging stations-Part I: Uncertainty modeling and problem formulation. IEEE Transactions on Sustainable Energy, 11(2), 970-978. [DOI:10.1109/TSTE.2019.2915338]
47. [2] Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., & Wu, J. (2017). Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Transactions on Sustainable Energy, 8(4), 1430-1442. [DOI:10.1109/TSTE.2017.2686009]
48. [3] Argüello, A., Lara, J. D., Rojas, J. D., & Valverde, G. (2017). Impact of rooftop PV integration in distribution systems considering socioeconomic factors. IEEE Systems Journal, 12(4), 3531-3542. [DOI:10.1109/JSYST.2017.2739022]
49. [4] Elkadeem, M. R., Abd Elaziz, M., Ullah, Z., Wang, S., & Sharshir, S. W. (2019). Optimal planning of renewable energy-integrated distribution system considering uncertainties. IEEE Access, 7, 164887-164907. [DOI:10.1109/ACCESS.2019.2947308]
50. [5] Zhuang, P., Zamir, T., & Liang, H. (2020). Blockchain for cybersecurity in smart grid: A comprehensive survey. IEEE Transactions on Industrial Informatics, 17(1), 3-19. [DOI:10.1109/TII.2020.2998479]
51. [6] Erdinç, O., Taşcıkaraolu, A., Paterakis, N. G., Dursun, I., Sinim, M. C., & Catalao, J. P. (2017). Comprehensive optimization model for sizing and siting of DG units, EV charging stations, and energy storage systems. IEEE Transactions on Smart Grid, 9(4), 3871-3882. [DOI:10.1109/TSG.2017.2777738]
52. [7] Ferruzzi, G., Cervone, G., Delle Monache, L., Graditi, G., & Jacobone, F. (2016). Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production. Energy, 106, 194-202. [DOI:10.1016/j.energy.2016.02.166]
53. [8] Li, P., Ji, J., Ji, H., Jian, J., Ding, F., Wu, J., & Wang, C. (2020). MPC-based local voltage control strategy of DGs in active distribution networks. IEEE Transactions on Sustainable Energy, 11(4), 2911-2921. [DOI:10.1109/TSTE.2020.2981486]
54. [9] Truong, K. H., Nallagownden, P., Elamvazuthi, I., & Vo, D. N. (2020). A quasi-oppositional-chaotic symbiotic organisms search algorithm for optimal allocation of DG in radial distribution networks. Applied Soft Computing, 88, 106067. [DOI:10.1016/j.asoc.2020.106067]
55. [10] Naghdi, M., Shafiyi, M. A., & Haghifam, M. R. (2019). A combined probabilistic modeling of renewable generation and system load types to determine allowable DG penetration level in distribution networks. International Transactions on Electrical Energy Systems, 29(1), e2696. [DOI:10.1002/etep.2696]
56. [11] Hu, L., Liu, K. Y., Sheng, W., Diao, Y., & Jia, D. (2017). Research on maximum allowable capacity of distributed generation in distributed network under global energy internet considering static voltage stability. The Journal of Engineering, 2017(13), 2276-2280. [DOI:10.1049/joe.2017.0736]
57. [12] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
58. [13] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
59. [14] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
60. [15] Essackjee, I. A., & King, R. T. A. (2016, August). The impact of increasing Penetration Level of Small Scale Distributed Generations on voltage in a secondary distribution network. In 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 245-250). IEEE. [DOI:10.1109/EmergiTech.2016.7737347]
61. [16] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
62. [17] Rahmani, R., Aghaee, S. S., Hosseinian, S. H., & Sadeghi, S. H. H. (2017, April). Determining maximum penetration level of distributed generation sources in distribution network considering harmonic limits and maintain protection coordination scheme. In 2017 Conference on Electrical Power Distribution Networks Conference (EPDC) (pp. 196-199). IEEE. [DOI:10.1109/EPDC.2017.8012763]
63. [18] Chamana, M., & Chowdhury, B. H. (2018). Optimal voltage regulation of distribution networks with cascaded voltage regulators in the presence of high PV penetration. IEEE Transactions on Sustainable Energy, 9(3), 1427-1436.. [DOI:10.1109/TSTE.2017.2788869]
64. [19] Guo, Y., Wu, Q., Gao, H., Chen, X., Østergaard, J., & Xin, H. (2018). MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system. IEEE Transactions on Sustainable Energy, 10(4), 1731-1739. [DOI:10.1109/TSTE.2018.2869932]
65. [20] Jamroen, C., Pannawan, A., & Sirisukprasert, S. (2018, September). Battery energy storage system control for voltage regulation in microgrid with high penetration of PV generation. In 2018 53rd International Universities Power Engineering Conference (UPEC) (pp. 1-6). IEEE. [DOI:10.1109/UPEC.2018.8541888]
66. [21] Nguyen, T. A., Rigo-Mariani, R., Ortega-Vazquez, M. A., & Kirschen, D. S. (2018, August). Voltage Regulation in Distribution Grid Using PV Smart Inverters. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1-5). IEEE. [DOI:10.1109/PESGM.2018.8586453]
67. [22] Cui, T., Shen, Y., Liang, L., Zhang, B., Guo, H., & Zuo, J. (2018, November). Real-time voltage regulation of distributed power grids with wind power integration. In 2018 International Conference on Power System Technology (POWERCON) (pp. 2102-2107). IEEE. [DOI:10.1109/POWERCON.2018.8602299]
68. [23] Liu, J., Li, Y., Rehtanz, C., Cao, Y., Qiao, X., Lin, G., ... & Sun, C. (2019). An OLTC-inverter coordinated voltage regulation method for distribution network with high penetration of PV generations. International Journal of Electrical Power & Energy Systems, 113, 991-1001. [DOI:10.1016/j.ijepes.2019.06.030]
69. [24] Montoya, O. D., Grisales-Noreña, L. F., Gil-González, W., Alcalá, G., & Hernandez-Escobedo, Q. (2020). Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators. Symmetry, 12(2), 322. [DOI:10.3390/sym12020322]
70. [25] Cheng, Y., Zhang, N., Kirschen, D. S., Huang, W., & Kang, C. (2020). Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China. Applied Energy, 261, 114390. [DOI:10.1016/j.apenergy.2019.114390]
71. [26] Ma, C., Menke, J. H., Dasenbrock, J., Braun, M., Haslbeck, M., & Schmid, K. H. (2019). Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation. Applied Energy, 256, 113907. [DOI:10.1016/j.apenergy.2019.113907]
72. [27] Li, K., Wang, F., Mi, Z., Fotuhi-Firuzabad, M., Duić, N., & Wang, T. (2019). Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation. Applied Energy, 253, 113595. [DOI:10.1016/j.apenergy.2019.113595]
73. [28] Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2020). An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal, 11(2), 409-418. [DOI:10.1016/j.asej.2019.08.011]
74. [29] Swief, R. A., & El-Amary, N. H. (2020). Optimal probabilistic reliable hybrid allocation for system reconfiguration applying WT/PV and reclosures. Ain Shams Engineering Journal, 11(1), 109-118. [DOI:10.1016/j.asej.2019.09.010]
75. [30] Ali, A., Raisz, D., Mahmoud, K., & Lehtonen, M. (2019). Optimal placement and sizing of uncertain PVs considering stochastic nature of PEVs. IEEE Transactions on Sustainable Energy, 11(3), 1647-1656. [DOI:10.1109/TSTE.2019.2935349]
76. [31] Yahiaoui, A., Benmansour, K., & Tadjine, M. (2016). Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Solar Energy, 137, 1-10. [DOI:10.1016/j.solener.2016.07.050]
77. [32] EEriksson, E. L. V., & Gray, E. M. (2017). Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems-A critical review. Applied energy, 202, 348-364. [DOI:10.1016/j.apenergy.2017.03.132]
78. [33] Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2012). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE transactions on power systems, 28(1), 317-325. [DOI:10.1109/TPWRS.2012.2197227]
79. [34] Tolabi, H. B., Ali, M. H., & Rizwan, M. (2014). Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Transactions on sustainable Energy, 6(1), 210-218. [DOI:10.1109/TSTE.2014.2364230]
80. [35] Aman, M. M., Jasmon, G. B., Bakar, A. H. A., Mokhlis, H., & Karimi, M. (2014). Optimum shunt capacitor placement in distribution system-A review and comparative study. Renewable and Sustainable Energy Reviews, 30, 429-439. [DOI:10.1016/j.rser.2013.10.002]
81. [36] Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106-119. [DOI:10.1016/j.eswa.2015.10.039]
82. [37] Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381. [DOI:10.1016/j.neucom.2015.06.083]
83. [38] Jayakumar, N., Subramanian, S., Ganesan, S., Elanchezhian, E.B., 2016. Grey wolf optimization for combined heat and power dispatch with cogeneration systems. Int. J. Electr. Power Energy Syst. 74, 252-264 [DOI:10.1016/j.ijepes.2015.07.031]
84. [39] Lu, C., Xiao, S., Li, X., Gao, L., 2016. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Adv. Eng. Softw. 99, 161-176. [DOI:10.1016/j.advengsoft.2016.06.004]
85. [40]Precup, R.E., David, R.C., Petriu, E.M., 2016b. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Trans. Ind. Electron. [DOI:10.1109/TIE.2016.2607698]
86. [41] Wazir, A., & Arbab, N. (2016). Analysis and optimization of IEEE 33 bus radial distributed system using optimization algorithm. Journal of Emerging Trends in Applied Engineering, 1(2), 17-21.
87. [42] Nor, N. M., Ali, A., Ibrahim, T., & Romlie, M. F. (2017). Battery storage for the utility-scale distributed photovoltaic generations. IEEE Access, 6, 1137-1154. [DOI:10.1109/ACCESS.2017.2778004]
88. [43] Olowu, T. O., Sundararajan, A., Moghaddami, M., & Sarwat, A. I. (2018). Future challenges and mitigation methods for high photovoltaic penetration: A survey. Energies, 11(7), 1782. [DOI:10.3390/en11071782]
89. [44] Cheng, D., Mather, B. A., Seguin, R., Hambrick, J., & Broadwater, R. P. (2015). Photovoltaic (PV) impact assessment for very high penetration levels. IEEE Journal of photovoltaics, 6(1), 295-300. [DOI:10.1109/JPHOTOV.2015.2481605]
90. [45] Hraiz, M. D., García, J. A. M., Castañeda, R. J., & Muhsen, H. (2020). Optimal PV size and location to reduce active power losses while achieving very high penetration level with improvement in voltage profile using modified Jaya algorithm. IEEE Journal of Photovoltaics, 10(4), 1166-1174. [DOI:10.1109/JPHOTOV.2020.2995580]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini Kordkheili A, ghasemi marzbali A. The Allocation of Optimal Capacity of Solar Sources to Achieve the Maximum Penetration Rate and Improve the Voltage Profile in Distribution Systems. ieijqp 2023; 12 (2) :57-70
URL: http://ieijqp.ir/article-1-954-fa.html

کرد خیلی علی، قاسمی مرزبالی علی. تخصیص ظرفیت مطلوب منابع خورشیدی به منظور دستیابی به حداکثرسطح نفوذ و بهبود پروفایل ولتاژ در سیستم های توزیع. نشریه کیفیت و بهره وری صنعت برق ایران. 1402; 12 (2) :57-70

URL: http://ieijqp.ir/article-1-954-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 2 - ( 5-1402 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4570