Double phase fault location in microgrids with the presence of electric vehicles and Distributed parameters line model
|
Mohammad Daisy1 , Mahmood Hosseini Aliabadi1 , Shahram Javadi *1 , Hassan Meyar naimi1  |
1- Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran |
|
Abstract: (2259 Views) |
Nowadays, renewable energy is increasingly used in smart grids and microgrids to reduce the use of fossil fuels and improve network efficiency. Like all power system devices, microgrids are subject to transient and steady-state faults, such as short circuits. These faults impair reliability and consumer dissatisfaction. To accurately, automatically, and economically determine the location of a fault, a robust fault location method is needed to stabilize and repair the damaged part of the network. Given the access to the data of all nodes, the fault in these networks can be located based on the data on the two terminals. Accordingly, this paper proposes a method for determining fault distance and faulty section in the island and grid-connected microgrids. The proposed method uses distributed parameters line model and calculates the location of double-phase faults in the microgrid based on voltage and current data on both sides of each section, taking renewable energies and electric vehicles into account. At first, the measurement devices receive and store the current and voltage data at the beginning and end of each section. If a fault occurs, the fault distance is determined by calculating the difference between voltages and currents on both sides of the fault. According to the sampling rate, many voltage and current samples are obtained during the fault. The proposed method calculates a fault distance for each sample. As a result, many fault distances are obtained. These calculations are done for all sections. In the next step, the distances obtained for each section are plotted on the coordinate axis, and a curve is obtained for each section. Among the curves obtained, one curve has a global minimum, which indicates the faulty section. Other curves are ascending or descending. In addition, the global minimum point indicates the calculated distance of the fault from the beginning of the section. This method is not sensitive to electric vehicle models and distributed generation sources and uses only less than half-cycle data to execute the algorithm. The performance of the method is investigated with the simulation of a 9-bus microgrid in MATLAB/SIMULINK. The effects of changes in line parameters (two scenarios), different fault locations, fault resistance (0, 25, and 50 Ω), fault inception angles (36, 90, 180, and 270 degrees), different DGs operation modes (three scenarios), and measurements error (±3%) are studied. The maximum and minimum errors of this method are obtained to be 0.97% and 0.02%, respectively. The results indicate the high accuracy of the proposed method compared to other fault location methods.
|
|
Keywords: Microgrid, Fault Location, Electric Vehicles, Distributed Parameters Line Model |
|
Full-Text [PDF 2329 kb]
(475 Downloads)
|
Type of Study: Research |
Subject:
Special Received: 2022/05/6 | Accepted: 2022/05/31 | Published: 2023/04/30
|
|
|
|
|
References |
1. Wang, Y., Sheikh, O., Hu, B., Chu, C.-C., & Gadh, R. (2014). Integration of V2H/V2G hybrid system for demand response in distribution network. Paper presented at the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm). [ DOI:10.1109/SmartGridComm.2014.7007748] 2. Katić, V. A., Aleksandar, M., Dumnić, B. P., & Popadić, B. P. (2019). Impact of V2G operation of electric vehicle chargers on distribution grid during voltage dips. Paper presented at the IEEE EUROCON 2019-18th International Conference on Smart Technologies. [ DOI:10.1109/EUROCON.2019.8861904] 3. Mazumder, M., & Debbarma, S. (2020). EV Charging Stations With a Provision of V2G and Voltage Support in a Distribution Network. IEEE Systems Journal, 15(1), 662-671. [ DOI:10.1109/JSYST.2020.3002769] 4. Lu, J., & Hossain, J. (2015). Vehicle-to-grid: linking electric vehicles to the smart grid: Institution of Engineering and Technology. [ DOI:10.1049/PBPO079E] 5. Dashti, R., Daisy, M., Mirshekali, H., Shaker, H. R., & Aliabadi, M. H. (2021). A Survey of Fault Prediction and Location Methods in Electrical Energy Distribution Networks. Measurement, 109947. [ DOI:10.1016/j.measurement.2021.109947] 6. Orozco-Henao, C., Mora-Florez, J., Marín-Quintero, J., Velez, J. C., Da Silva, M., & Perez-Londoño, S. (2019). Fault Location System for Active Distribution Networks. Paper presented at the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America [ DOI:10.1109/ISGT-LA.2019.8895375] 7. Hassani, H., Razavi-Far, R., & Saif, M. (2020). Fault location in smart grids through multicriteria analysis of group decision support systems. IEEE Transactions on Industrial Informatics, 16(12), 7318-7327. [ DOI:10.1109/TII.2020.2977980] 8. Liang, R., Peng, N., Zhou, L., Meng, X., Hu, Y., Shen, Y., & Xue, X. (2019). Fault location method in power network by applying accurate information of arrival time differences of modal traveling waves. IEEE Transactions on Industrial Informatics, 16(5), 3124-3132. [ DOI:10.1109/TII.2019.2903267] 9. Dashti, R., Ghasemi, M., & Daisy, M. (2018). Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying π line model. Energy, 159, 344-360. [ DOI:10.1016/j.energy.2018.06.111] 10. Naidu, O., & Pradhan, A. K. (2020). Precise Traveling Wave-Based Transmission Line Fault Location Method Using Single-Ended Data. IEEE Transactions on Industrial Informatics, 17(8), 5197-5207. [ DOI:10.1109/TII.2020.3027584] 11. Daisy, M., & Dashti, R. (2016). Single phase fault location in electrical distribution feeder using hybrid method. Energy, 103, 356-368. [ DOI:10.1016/j.energy.2016.02.097] 12. Chen, R., Lin, T., Bi, R., & Xu, X. (2017). Novel strategy for accurate locating of voltage sag sources in smart distribution networks with inverter-interfaced distributed generators. Energies, 10(11), 1885. [ DOI:10.3390/en10111885] 13. Gabr, M. A., Ibrahim, D. K., Ahmed, E. S., & Gilany, M. I. (2017). A new impedance-based fault location scheme for overhead unbalanced radial distribution networks. Electric power systems research, 142, 153-162. [ DOI:10.1016/j.epsr.2016.09.015] 14. Gord, E., Dashti, R., Najafi, M., & Shaker, H. R. (2019). Real fault section estimation in electrical distribution networks based on the fault frequency component analysis. Energies, 12(6), 1145. [ DOI:10.3390/en12061145] 15. Aboshady, F., Thomas, D. W., & Sumner, M. (2019). A wideband single end fault location scheme for active untransposed distribution systems. IEEE Transactions on smart grid, 11(3), 2115-2124. [ DOI:10.1109/TSG.2019.2947870] 16. Mirshekali, H., Dashti, R., Keshavarz, A., Torabi, A. J., & Shaker, H. R. (2020). A novel fault location methodology for smart distribution networks. IEEE Transactions on smart grid, 12(2), 1277-1288. [ DOI:10.1109/TSG.2020.3031400] 17. Stevenson, W. D. (1975). Element of Power System. Analysis, Second Edition, McGraw H, 111. 18. Dashti, R., Daisy, M., & Aliabadi, M. H. (2021). Healthy and faulty mode detection in power distribution networks based on park transformation. Electric power systems research, 191, 106867. [ DOI:10.1016/j.epsr.2020.106867] 19. Dashti, R., Daisy, M., Javadi, S., & Aliabadi, M. H. (2021). Proposing a new method to improve the longitudinal differential relay performance using the Clarke transformation: Theory, simulation, and experiment. Measurement, 168, 108450. [ DOI:10.1016/j.measurement.2020.108450] 20. Zhu, Y., & Tomsovic, K. (2002). Development of models for analyzing the load-following performance of microturbines and fuel cells. Electric power systems research, 62(1), 1-11. [ DOI:10.1016/S0378-7796(02)00033-0] 21. Gholami, M., Abbaspour, A., Moeini-Aghtaie, M., Fotuhi-Firuzabad, M., & Lehtonen, M. (2019). Detecting the location of short-circuit faults in active distribution network using PMU-based state estimation. IEEE Transactions on smart grid, 11(2), 1396-1406. [ DOI:10.1109/TSG.2019.2937944] 22. Bretas, A., Orozco-Henao, C., Marín-Quintero, J.. (2021). Microgrids physics model-based fault location formulation: Analytic-based distributed energy resources effect compensation. Electric power systems research, 195, 107178. [ DOI:10.1016/j.epsr.2021.107178] 23. Ganivada, P. K., & Jena, P. (2021). A Fault Location Identification Technique for Active Distribution System. IEEE Transactions on Industrial Informatics. [ DOI:10.1109/TII.2021.3103543] 24. Bahmanyar, A., & Jamali, S. (2017). Fault location in active distribution networks using non-synchronized measurements. International Journal of Electrical Power & Energy Systems, 93, 451-458. [ DOI:10.1016/j.ijepes.2017.06.018] 25. Duan, J., Zhang, K., & Cheng, L. (2015). A novel method of fault location for single-phase microgrids. IEEE Transactions on smart grid, 7(2), 915-925. [ DOI:10.1109/TSG.2015.2480065] 26. غفارزاده، اکبری،"مروری برروشهای مکانیابی خطا درسیستمهای توزیع برق"، هشتمین کنفرانس تخصصی حفاظت و کنترل سیستمهای قدرت، تهران، 1392. 27. Dashti, R., & Sadeh, J. (2014). Accuracy improvement of impedance‐based fault location method for power distribution network using distributed‐parameter line model. International Transactions on Electrical Energy Systems, 24(3), 318-334. [ DOI:10.1002/etep.1690] 28. دیسی، دشتی،"مکانیابی خطا در شبکههای توزیع با استفاده از ترکیب روش امپدانسی و فرورفتگی ولتاژ"، مهندسی برق و مهندسی کامپیوتر ایران - الف مهندسی برق، دوره 15، شماره 1، صفحه 12-20، بهار 1396 29. دشتی، دیسی، جوادی،"مکانیابی خطای تک فاز به روش امپدانسی با بهرهگیری از روشهای شناسایی الگو"، کیفیت و بهره وری در صنعت برق ایران, دوره 7، شماره 2 (پیاپی 14)، صفحه 11-19، پاییز و زمستان 1397
|
|
Daisy M, Hosseini Aliabadi M, javadi S, meyar naimi H. Double phase fault location in microgrids with the presence of electric vehicles and Distributed parameters line model. ieijqp 2023; 12 (1) :11-21 URL: http://ieijqp.ir/article-1-900-en.html
|