[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 2 (8-2025) ::
ieijqp 2025, 14(2): 1-15 Back to browse issues page
Investigating The Effect of Removing Gas Turbine Exhaust Silencers on The Input Flow to The Recovery Boiler of a Combined Cycle Power Plant
Abbas Hosain zadeh nasrabadi1 , Ebrahim Goshtasbi Rad *1 , Edris Ghonodi1
1- Department of Thermo-fluid, School of Mechanical Engineering, Shiraz University & Department of Thermo-fluid, School of Mechanical Engineering, Shiraz University
Abstract:   (316 Views)

This study analyzes and evaluates the effect of relocating the silencers of the exhaust system of the Alstom single-pressure, combined-cycle power plant in Yazd. The exhaust system design should minimize both pressure drops and ensure a uniform flow at its outlet (the inlet to the recuperator boiler). Analysis of the Yazd power plant exhaust system in the combined-cycle state indicates that vortices form in the divergent channel preceding the silencer, while the outlet flow remains uniform. The total pressure drop is 535.71 Pa.For the gas-turbine cycle, vortices form in the divergent channel and in the by-pass exhaust stack, with a total pressure drop of 611.33 Pa. Relocating the silencers inside the by-pass exhaust stack reduces the pressure drop caused by their presence in the gas inlet to the recuperator boiler; however, the flow becomes highly non-uniform, and a large vortex region with circulating flow develops within the exhaust system. The inlet static pressure decreases to 467.61 Pa and the total pressure drop becomes 57.5 Pa. For the gas-turbine state, analogous to the combined-cycle, flow uniformity deteriorates and a vortex region with substantial circulating flow forms within the diverging channel. The total pressure drop for this condition is 929.56 Pa.Relocating the silencers yields no perceptible reduction in pressure drop in the combined-cycle and has no substantial effect on efficiency. However, silencer life increases, and accessibility for maintenance improves. Implementing this modification in the exhaust system should be performed by experienced personnel, and, upon validation of its value, geometry refinements to achieve flow uniformity should be made; otherwise, particularly in the combined-cycle, the non-uniform flow could degrade the recuperator heat exchangers and affect recuperator performance. To achieve flow uniformity inside the exhaust, two modification schemes were proposed and evaluated.Modification Plan 1: The length of the divergent channel is increased, which reduces the channel divergence angle. As a result, the flow in the combined-cycle becomes uniform, and the inlet static pressure relative to the present exhaust system decreases by 518.6 Pa, with a total pressure drop of 16.24 Pa. This modification did not affect the gas-turbine cycle, where the flow remains non-uniform. The inlet static pressure for the exhaust in this state relative to the present system increases by 275.45 Pa, and the total pressure drop for this geometry is 929.56 Pa. This plan entails a high implementation cost because a new divergent channel must be constructed.Modification Plan 2: A perforated plate is placed in the center of the divergent channel. With this modification, the flow in the combined-cycle becomes uniform, and the vortices caused by silencer relocation diminish. The inlet static pressure relative to the present system decreases by 299.62 Pa, and the total pressure drop is 235.78 Pa. This modification is effective for the gas-turbine cycle, yielding a more uniform flow. The inlet static pressure relative to the present system increases by 360.33 Pa, and the total pressure drop for this geometry is 988.6 Pa. Although this modification reduces pressure drop in the combined-cycle compared with the previous state, its advantage lies in lower implementation cost.
 

Keywords: Exhaust system, Silencer, Gas turbine, combined cycle.
Full-Text [PDF 672 kb]   (14 Downloads)    
Type of Study: Applicable |
Received: 2023/09/20 | Accepted: 2025/08/8 | Published: 2025/08/10
References
1. [1] م، نظری، "طراحی سیستم جهت سیستم کنترل توربین¬های گازی 25 مگاواتی"، پایان¬نامه کارشناسی ارشد، دانشگاه تربیت شهید رجائی، 1391.
2. [2] م، بیدی و ف، هاشمی و س، کیا و ا، محمدی، "تحلیل ترمودینامیکی روش¬های کاهش مصرف داخلی نیروگاه سیکل ترکیبی کرمان"، نشریه علمی-پژوهشی کیفیت و بهره¬وری صنعت برق ایران، سال پنجم، شماره9، 1395.
3. [3] R. A. Morris, "Gas Turbine Exhaust Systems - Design Considerations.," Am. Soc. Mech. Eng., 1987. [DOI:10.1115/87-GT-238]
4. [4] B. E. Lee, S. B. Kwon, and C. S. Lee, "On the effect of swirl flow of gas turbine exhaust gas in an inlet duct of heat recovery steam generator," J. Eng. Gas Turbines Power, vol. 124, no. 3, pp. 496-502, 2002. [DOI:10.1115/1.1473156]
5. [5] C. Jayatunga, "An aerodynamic study of industrial gas turbine exhaust turbines," Doctoral Thesis, Loughborough University, 2005.
6. [6] N. Hegde, I. Han, T. W. Lee, and R. P. Roy, "Flow and heat transfer in heat recovery steam generators," J. Energy Resour. Technol. Trans. ASME, vol. 129, no. 3, pp. 232-242, 2007. [DOI:10.1115/1.2751505]
7. [7] ج، قاسمی و ا، نظری، "بررسی تأثیر دمپر دودکش در پارامترهای ترمودینامیکی و حرارتی بویلر بازیاب نیروگاه سیکل ترکیبی سنندج"، بیست و پنجمین کنفرانس سالیانه مهندسی مکانیک ایران، تهران، دانشگاه تربیت مدرس، 1396.
8. [8] M. Lakshmiraju and J. Cui, "Numerical investigation of pressure loss reduction in a power plant stack," Appl. Math. Model., vol. 31, no. 9, pp. 1915-1933, 2007. [DOI:10.1016/j.apm.2006.06.016]
9. [9] S. Bayraktar, A. Safa, and T. Yilmaz, "Cfd and analytical analysis of exhaust system of a gas turbine used in a ship," AIP Conf. Proc., vol. 936, no. January 2007, pp. 619-622, 2007. [DOI:10.1063/1.2790223]
10. [10] M. Pinelli and G. Bucci, "Numerical based design of exhaust gas system in a cogeneration power plant," Appl. Energy, vol. 86, no. 6, pp. 857-866, 2009. [DOI:10.1016/j.apenergy.2008.08.016]
11. [11] A. Mohajer, A. Noroozi, and S. Norouzi, "Optimization of diverter box configuration in a V94.2 gas turbine exhaust system using numerical simulation," World Acad. Sci. Eng. Technol., vol. 33, no. 9, pp. 566-571, 2009.
12. [12] H. Shin, D. Kim, H. Ahn, S. Choi, and G. Myoung, "Investigation of the Flow Pattern in a Complex Inlet Duct of a Heat Recovery Steam Generator," Energy and Power, vol. 2, no. 1, pp. 1-8, 2012. [DOI:10.5923/j.ep.20120201.01]
13. [13] M. Ameri and F. J. Dorcheh, "The CFD Modeling of Heat Recovery Steam Generator Inlet Duct," Int. J. Energy Eng., vol. 3, no. 3, pp. 74-79, 2013. [DOI:10.5963/IJEE0303003]
14. [14] P. Hanafizadeh, M. M. Siahkalroudi, and P. Ahmadi, "Experimental and numerical investigation of optimum design of semi industrial heat recovery steam generator inlet duct," Appl. Therm. Eng., vol. 104, pp. 375-385, 2016. [DOI:10.1016/j.applthermaleng.2016.05.024]
15. [15] H. K. So, T. H. Jo, Y. H. Lee, B. C. Koo, and D. H. Lee, "Design optimization of HRSG inlet duct geometry for improving flow uniformity using meta-heuristic algorithm," J. Mech. Sci. Technol., vol. 32, no. 2, pp. 947-958, Feb. 2018. [DOI:10.1007/s12206-018-0145-x]
16. [16] A. A. Zhinov, D. V. Shevelev, A. K. Karyshev, and P. A. Anan'ev, "The numerical research of the gas flow in the exhaust duct of the gas turbine with a waste heat boiler," Ain Shams Eng. J., vol. 9, no. 4, pp. 1325-1334, 2018. [DOI:10.1016/j.asej.2016.08.007]
17. [17] J. Yi and S. Ju, "Simulation Study on Noise Reduction Performance of Thickness of Sound Absorber Films in Industrial Gas Turbine Muffler," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 472, no. 1. [DOI:10.1088/1757-899X/472/1/012051]
18. [18] M. Maleki, A. Aslani, Z. Zolfaghari, R. Zahedi, "Advanced bibliographic analysis on the development of natural gas combined cycle power plant with CO2 capture and storage technology", Sustainable Energy Technologies and Assessments, Vol. 52, 102339, 2022. [DOI:10.1016/j.seta.2022.102339]
19. [19] B. Faqihi, F. Ghaith, " A comprehensive review and evaluation of heat recovery methods from gas turbine exhaust systems", Int. J. of Thermofluids, Vol. 18, 100347, 2023. [DOI:10.1016/j.ijft.2023.100347]
20. [20] M. A. Motamed, M. Genrup, L. O. Nord, " Part-load thermal efficiency enhancement in gas turbine combined cycles by exhaust gas recirculation", Applied Thermal Engineering, Vol. 244, 122716, 2024. [DOI:10.1016/j.applthermaleng.2024.122716]
21. [21] B. Faqihi, F. Ghaith, " Enhancement of waste heat recovery from exhaust stack silencers in A
22. simple cycle gas turbine", Int. J. of Thermofluids, Vol. 27, 101237, 2025. [DOI:10.1016/j.ijft.2025.101237]
23. [22] ANSYS Fluent User's Guide, Release 19.2, 2018, page 832.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosain zadeh nasrabadi A, Goshtasbi Rad E, Ghonodi E. Investigating The Effect of Removing Gas Turbine Exhaust Silencers on The Input Flow to The Recovery Boiler of a Combined Cycle Power Plant. ieijqp 2025; 14 (2) :1-15
URL: http://ieijqp.ir/article-1-972-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 2 (8-2025) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.08 seconds with 40 queries by YEKTAWEB 4718