[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 4 (12-2023) ::
ieijqp 2023, 12(4): 1-16 Back to browse issues page
The causes and effects of the degradation of solar photovoltaic panels' components
Dorsa Razeghi Jahromi1 , Mohammad Mahdi Gordali2 , Aslan Gholami2 , Majid Zandi * 2
1- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
2- Department of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran
Abstract:   (635 Views)
The development of photovoltaic solar systems as one of the solutions for electricity supply in the form of sustainable and modern development has attracted much attention in recent years. Nevertheless, since these systems are located in open environments, they are exposed to a set of external harsh conditions and stresses during their working period. Ultraviolet radiation, fluctuating temperature, and humidity cycles, rain, snow and hail, wind, dust and sand storms, or salt deposition can severely affect the efficiency of photovoltaic power plants and the lifespan of these systems. Accurate prediction knowledge of the types of possible failures for these systems can lead to better management of the systems and their higher productivity. Therefore, in the present study, a content analysis method was used to review previous research in this field to categorize and explain the types of failures reported for these systems as well as the reasons for such failures and the affected components. The studies conducted in this field showed that among the degradation mechanisms related to weather and environment, the degradation mechanisms of ethylene vinyl acetate copolymer, and the stability relationships of this material in silicon-based solar panels have been investigated. The effects caused by the degradation of this polymer such as color change, layering, bubble formation, and corrosion, and their relationship with polymer structure, and chemical, mechanical, optical, and electrical properties have also been studied. The results of this research have been presented to researchers and decision-makers in the field of photovoltaic solar systems and the efficiency of the electricity industry.
 
Keywords: Solar cell, Polymer, Delamination, Chalking, Corrosion, Hot spots, Spiral effect
Full-Text [PDF 2350 kb]   (164 Downloads)    
Type of Study: Research |
Received: 2023/04/4 | Accepted: 2023/07/1 | Published: 2023/12/23
References
1. [1] A. Gholami, M. Ameri, M. Zandi, R. G. Ghoachani, S. Eslami, and S. Pierfederici, Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper, IEEE Journal of Photovoltaics, Vol. 10, No. 3, pp. 824-837, 2020. [DOI:10.1109/JPHOTOV.2020.2978851]
2. [2] Y. Gholami, A. Gholami, M. Ameri, and M. Zandi, Investigation of Applied Methods of Using Passive Energy In Iranian Traditional Urban Design, Case Study of Kashan, in 4th International Conference on Advances In Mechanical Engineering: ICAME 2018, 2018, pp. 3-12.
3. [3] M. C. C. de Oliveira, A. S. A. Diniz Cardoso, M. M. Viana, and V. de F. C. Lins, The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review, Renewable and Sustainable Energy Reviews, Vol. 81, pp. 2299-2317, 2018. [DOI:10.1016/j.rser.2017.06.039]
4. [4] Y. Noorollahi, N. Vahidrad, S. Eslami, and M. N. Naseer, Modeling of Transition from Natural Gas to Hybrid Renewable Energy Heating system, International Journal of Sustainable Energy Planning and Management, Vol. 32, pp. 61-78, 2021.
5. [5] Y. Noorollahi, A. Khatibi, and S. Eslami, Replacing natural gas with solar and wind energy to supply the thermal demand of buildings in Iran: A simulation approach, Sustainable Energy Technologies and Assessments, Vol. 44, p. 101047, 2021. [DOI:10.1016/j.seta.2021.101047]
6. [6] A. Gholami, A. Tajik, S. Eslami, and M. Zandi, Feasibility Study of Renewable Energy Generation Opportunities for a Dairy Farm, Journal of Renewable Energy and Environment, Vol. 6, No. 2, pp. 8-14, 2019.
7. [7] Energy Transition Outlook 2021 | DNV. https://www.dnv.com/energy-transition-outlook
8. [8] A. Aryanfar, A. Gholami, M. Pourgholi, and M. Zandi, Multicriteria wind potential assessment using fuzzy logic in decision making: A case study of Iran, Wind Energy, No. February, p. we.2640, 2021. [DOI:10.1002/WE.2640/v3/response1]
9. [9] A. Aryanfar, A. Gholami, M. Pourgholi, S. Shahroozi, M. Zandi, and A. Khosravi, Multi-criteria photovoltaic potential assessment using fuzzy logic in decision-making: A case study of Iran, Sustainable Energy Technologies and Assessments, Vol. 42, No. April, p. 100877, 2020. [DOI:10.1016/j.seta.2020.100877]
10. [10] S. Eslami, A. Gholami, H. Akhbari, M. Zandi, and Y. Noorollahi, Solar-based multi-generation hybrid energy system; simulation and experimental study, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 1-13, 2020. [DOI:10.1080/01430750.2020.1785937]
11. [11] S. Eslami, A. Gholami, A. Bakhtiari, M. Zandi, and Y. Noorollahi, Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future, Energy Conversion and Management, Vol. 200, No. May, p. 112107, 2019. [DOI:10.1016/j.enconman.2019.112107]
12. [12] A. Gholami, S. Eslami, T. Aryan, M. Ameri, R. Gavagsaz-Ghoachani, and M. Zandi, A Review of the Effect of Dust on the Performance of Photovoltaic Panels, Iranian Electric Industry Journal of Quality and Productivity, Vol. 8, No. 15, pp. 93-102, 2019.
13. [13] B. Ottersböck, G. Oreski, and G. Pinter, Comparison of different microclimate effects on the aging behavior of encapsulation materials used in photovoltaic modules, Polymer Degradation and Stability, Vol. 138, pp. 182-191, 2017. [DOI:10.1016/j.polymdegradstab.2017.03.010]
14. [14] Ross RJr. Technology Developments Towards 30-year-life of Photovoltaic Modules. Proceedings of the 17th IEEE PV Specialists Conference (PVSC 17); 1984 May 1-4; Orlando, Florida: IEEE-PVSC. 1984 p. 464-72 - Google Search.
15. [15] A. Gholami et al., Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling, Solar Energy, Vol. 252, pp. 176-194, 2023. [DOI:10.1016/j.solener.2023.01.039]
16. [16] H. A. Kazem, M. T. Chaichan, A. H. A. Al-Waeli, R. Al-Badi, M. A. Fayad, and A. Gholami, Dust impact on photovoltaic/thermal system in harsh weather conditions, Solar Energy, Vol. 245, No. July, pp. 308-321, 2022. [DOI:10.1016/j.solener.2022.09.012]
17. [17] A. Gholami, M. Ameri, M. Zandi, R. Gavagsaz Ghoachani, and H. A. Kazem, Predicting solar photovoltaic electrical output under variable environmental conditions: Modified semi-empirical correlations for dust, Energy for Sustainable Development, Vol. 71, pp. 389-405, 2022. [DOI:10.1016/j.esd.2022.10.012]
18. [18] G. Makrides, B. Zinsser, M. Norton, G. E. Georghiou, M. Schubert, and J. H. Werner, Potential of photovoltaic systems in countries with high solar irradiation, Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, pp. 754-762, 2010. [DOI:10.1016/j.rser.2009.07.021]
19. [19] V. Sharma and S. S. Chandel, Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review, Renewable and Sustainable Energy Reviews, Vol. 27, pp. 753-767, 2013. [DOI:10.1016/j.rser.2013.07.046]
20. [20] M. Yaichi, A. Tayebi, A. Boutadara, A. Bekraoui, and A. Mammeri, Monitoring of PV systems installed in an extremely hostile climate in southern Algeria: Performance evaluation extended to degradation assessment of various PV panel of single-crystalline technologies, Energy Conversion and Management, Vol. 279, p. 116777, 2023. [DOI:10.1016/j.enconman.2023.116777]
21. [21] F. ibne Mahmood and G. TamizhMani, Impact of different backsheets and encapsulant types on potential induced degradation (PID) of silicon PV modules, Solar Energy, Vol. 252, pp. 20-28, 2023. [DOI:10.1016/j.solener.2023.01.047]
22. [22] H. M. Walwil, A. Mukhaimer, F. A. Al-Sulaiman, and S. A. M. Said, Comparative studies of encapsulation and glass surface modification impacts on PV performance in a desert climate, Solar Energy, Vol. 142, pp. 288-298, 2017. [DOI:10.1016/j.solener.2016.12.020]
23. [23] A. Ndiaye, A. Charki, A. Kobi, C. M. F. Kébé, P. A. Ndiaye, and V. Sambou, Degradations of silicon photovoltaic modules: A literature review, Solar Energy, Vol. 96, pp. 140-151, 2013. [DOI:10.1016/j.solener.2013.07.005]
24. [24] A. Badiee, I. A. Ashcroft, and R. D. Wildman, The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant, International Journal of Adhesion and Adhesives, Vol. 68, pp. 212-218, 2016. [DOI:10.1016/j.ijadhadh.2016.03.008]
25. [25] D. C. Jordan and S. R. Kurtz, Photovoltaic Degradation Rates-an Analytical Review, Progress in Photovoltaics: Research and Applications, Vol. 21, No. 1, pp. 12-29, 2013. [DOI:10.1002/pip.1182]
26. [26] E. J. Schneller et al., Manufacturing metrology for c-Si module reliability and durability Part III: Module manufacturing, Renewable and Sustainable Energy Reviews, Vol. 59, pp. 992-1016, 2016. [DOI:10.1016/j.rser.2015.12.215]
27. [27] M. C. López-Escalante, L. J. Caballero, F. Martín, M. Gabás, A. Cuevas, and J. R. Ramos-Barrado, Polyolefin as PID-resistant encapsulant material in PV modules, Solar Energy Materials and Solar Cells, Vol. 144, pp. 691-699, 2016. [DOI:10.1016/j.solmat.2015.10.009]
28. [28] G. Griffini, S. T.-J. of A. P. Science, and undefined 2016, Polymeric materials for long‐term durability of photovoltaic systems, Wiley Online Library, Vol. 133, No. 11, p. 43080, 2015. [DOI:10.1002/app.43080]
29. [29] A. Omazic et al., Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review, Solar Energy Materials and Solar Cells, Vol. 192, No. December 2018, pp. 123-133, 2019. [DOI:10.1016/j.solmat.2018.12.027]
30. [30] J. Varga, G. E.-C. and polymer science, and undefined 1997, High-temperature hedritic crystallization of the β-modification of isotactic polypropylene, Springer. [DOI:10.1007/s003960050113]
31. [31] S. Jiang, K. Wang, H. Zhang, Y. Ding, and Q. Yu, Encapsulation of PV Modules Using Ethylene Vinyl Acetate Copolymer as the Encapsulant, Macromolecular Reaction Engineering, Vol. 9, No. 5, pp. 522-529, 2015. [DOI:10.1002/mren.201400065]
32. [32] Pern, John. Module encapsulation materials, processing and testing (presentation). No. NREL/PR-520-44666. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2008.
33. [33] A. W. Czanderna and F. J. Pern, Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review, Solar Energy Materials and Solar Cells, Vol. 43, No. 2, pp. 101-181, 1996. [DOI:10.1016/0927-0248(95)00150-6]
34. [34] G. Oreski et al., Performance of PV modules using co-extruded backsheets based on polypropylene, Solar Energy Materials and Solar Cells, Vol. 223, 2021. [DOI:10.1016/j.solmat.2021.110976]
35. [35] P. Hülsmann and G. M. Wallner, Permeation of water vapour through polyethylene terephthalate (PET) films for back-sheets of photovoltaic modules, Polymer Testing, Vol. 58, pp. 153-158, 2017. [DOI:10.1016/j.polymertesting.2016.11.028]
36. [36] A. Gholami, A. Saboonchi, and A. A. Alemrajabi, Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications, Renewable Energy, Vol. 112, pp. 466-473, 2017. [DOI:10.1016/j.renene.2017.05.050]
37. [37] A. Gholami, I. Khazaee, S. Eslami, M. Zandi, and E. Akrami, Experimental investigation of dust deposition effects on photo-voltaic output performance, Solar Energy, Vol. 159, pp. 346-352, 2018. [DOI:10.1016/j.solener.2017.11.010]
38. [38] A. Gholami, A. A. Alemrajabi, and A. Saboonchi, Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications, Solar Energy, Vol. 157, pp. 559-565, 2017. [DOI:10.1016/j.solener.2017.08.075]
39. [39] A. Gholami, S. Eslami, A. Tajik, M. Ameri, R. Gavagsaz Ghoachani, and M. Zandi, A review of dust removal methods from the surface of photovoltaic panels, Mechanical Engineering, Sharif Journal, Vol. 35, No. 2, pp. 117-127, 2019.
40. [40] A. Gholami, M. Ameri, M. Zandi, and R. Gavagsaz Ghoachani, A single-diode model for photovoltaic panels in variable environmental conditions: Investigating dust impacts with experimental evaluation, Sustainable Energy Technologies and Assessments, Vol. 47, No. October, p. 101392, 2021. [DOI:10.1016/j.seta.2021.101392]
41. [41] A. Gholami, M. Ameri, M. Zandi, R. Gavagsaz Ghoachani, and M. Gholami, A fast and precise double-diode model for predicting photovoltaic panel electrical behavior in variable environmental conditions, International Journal of Ambient Energy, pp. 1-18, 2023. [DOI:10.1080/01430750.2023.2173290]
42. [42] G. Brito-Santos, B. Gil-Hernández, C. Hernández-Rodríguez, B. González-Díaz, R. Guerrero-Lemus, and J. Sanchiz, Degradation analysis of highly UV-resistant down-shifting layers for silicon-based PV module applications, Materials Science and Engineering: B, Vol. 288, p. 116207, 2023. [DOI:10.1016/j.mseb.2022.116207]
43. [43] A. Goswami and P. K. Sadhu, Degradation analysis and the impacts on feasibility study of floating solar photovoltaic systems, Sustainable Energy, Grids and Networks, Vol. 26, p. 100425, 2021. [DOI:10.1016/j.segan.2020.100425]
44. [44] E. Wang, H. E. Yang, J. Yen, S. Chi, and C. Wang, Failure Modes Evaluation of PV Module via Materials Degradation Approach, Energy Procedia, Vol. 33, pp. 256-264, 2013. [DOI:10.1016/j.egypro.2013.05.066]
45. [45] Typical Photovoltaic Backsheet Failure Mode Analysis under Different Climates in China - PDF Free Download. .
46. [46] A. Gholami, M. Ameri, M. Zandi, R. G. Ghoachani, S. Pierfederici, and H. A. Kazem, Step-By-Step Guide to Model Photovoltaic Panels: An Up-To-Date Comparative Review Study, IEEE Journal of Photovoltaics, Vol. 12, No. 4, pp. 915-928, 2022. [DOI:10.1109/JPHOTOV.2022.3169525]
47. [47] A. Gholami, M. Ameri, M. Zandi, and R. Gavagsaz Ghoachani, Electrical, thermal and optical modeling of photovoltaic systems: Step-by-step guide and comparative review study, Sustainable Energy Technologies and Assessments, Vol. 49, p. 101711, 2022. [DOI:10.1016/j.seta.2021.101711]
48. [48] K. Cristofoli, Preparação e caracterização de filmes de PEBD aditivados com fotoestabilizantes para a proteção de espumantes rose, 2012.
49. [49] V. Sharma and S. S. Chandel, A novel study for determining early life degradation of multi-crystalline-silicon photovoltaic modules observed in western Himalayan Indian climatic conditions, Solar Energy, Vol. 134, pp. 32-44, 2016. [DOI:10.1016/j.solener.2016.04.023]
50. [50] P. Sánchez-Friera, M. Piliougine, J. Peláez, J. Carretero, and M. S. De Cardona, Analysis of degradation mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe, Progress in Photovoltaics: Research and Applications, Vol. 19, No. 6, pp. 658-666, 2011. [DOI:10.1002/pip.1083]
51. [51] F. D. Novoa, D. C. Miller, and R. H. Dauskardt, Environmental mechanisms of debonding in photovoltaic backsheets, Solar Energy Materials and Solar Cells, Vol. 120, No. PART A, pp. 87-93, 2014. [DOI:10.1016/j.solmat.2013.08.020]
52. [52] C. Ferrara and D. Philipp, Why Do PV Modules Fail?, Energy Procedia, Vol. 15, pp. 379-387, 2012. [DOI:10.1016/j.egypro.2012.02.046]
53. [53] N. G. Dhere, Reliability of PV modules and balance-of-system components, undefined, pp. 1570-1576, 2005.
54. [54] D. Wu, J. Zhu, T. R. Betts, and R. Gottschalg, Degradation of interfacial adhesion strength within photovoltaic mini-modules during damp-heat exposure, Progress in Photovoltaics: Research and Applications, Vol. 22, No. 7, pp. 796-809, 2014. [DOI:10.1002/pip.2460]
55. [55] M. A. Munoz, M. C. Alonso-García, N. Vela, and F. Chenlo, Early degradation of silicon PV modules and guaranty conditions, Solar Energy, Vol. 85, No. 9, pp. 2264-2274, 2011. [DOI:10.1016/j.solener.2011.06.011]
56. [56] C. C. Lin, P. J. Krommenhoek, S. S. Watson, and X. Gu, Depth profiling of degradation of multilayer photovoltaic backsheets after accelerated laboratory weathering: Cross-sectional Raman imaging, Solar Energy Materials and Solar Cells, Vol. 144, pp. 289-299, 2016. [DOI:10.1016/j.solmat.2015.09.021]
57. [57] Broken Solar Panels Repairs|Maintenance Cost|Hovall. https://www.angi.com/articles/how-much-does-it-cost-repair-solar-panels.htm
58. [58] Micro Cracks: Causes and Impacts on Solar Panels. https://sinovoltaics.com/learning-center/quality/micro-cracks-causes-and-impacts-on-solar-panels/
59. [59] M. Rezvani, A. Gholami, R. Gavagsaz-Ghoachani, M. Phattanasak, and M. Zandi, A review of the factors affecting the utilization of solar photovoltaic panels, in 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 2022, pp. 62-69. [DOI:10.1109/RI2C56397.2022.9910278]
60. [60] A. Gholami, M. Ameri, M. Zandi, and R. Gavagsaz-Ghoachani, Dust Accumulation On Photovoltaic Modules: A Review On The Effective Parameters, Sigma Journal of Engineering and Natural Sciences, Vol. 39, No. 1, pp. 45-57, 2021.
61. [61] B. Figgis et al., Investigation of factors affecting condensation on soiled PV modules, Solar Energy, Vol. 159, No. January, pp. 488-500, 2018. [DOI:10.1016/j.solener.2017.10.089]
62. [62] H. Liu, V. Krishna, J. Lun Leung, T. Reindl, and L. Zhao, Field experience and performance analysis of floating PV technologies in the tropics, Progress in Photovoltaics: Research and Applications, Vol. 26, No. 12, pp. 957-967, 2018.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Razeghi Jahromi D, Gordali M M, Gholami A, Zandi M. The causes and effects of the degradation of solar photovoltaic panels' components. ieijqp 2023; 12 (4) :1-16
URL: http://ieijqp.ir/article-1-955-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 4 (12-2023) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 40 queries by YEKTAWEB 4645