[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 1 (4-2022) ::
ieijqp 2022, 11(1): 126-138 Back to browse issues page
Fault Diagnostic and Fault Tolerant Control of DFIG Back to Back Converter
Mehrnoosh Kamarzarrin1 , Mohammad Hossein Refan *1 , Parviz Amiri1
1- Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran- Iran
Abstract:   (2543 Views)
One of the most common types of wind turbines (WTs) is the Doubly-Fed Induction Generator (DFIG) with a back-to-back converter. The power converter with an Insulated Gate Bipolar Transistor (IGBT) switch is essential equipment for power regulation and grid connection in WTs. The converter IGBT open-circuit causes a drawback in output current and as a result, the production performance of the turbine is reduced. Condition Monitoring (CM), Fault Diagnostic (FD), and Fault-Tolerant Control (FTC) of a WT increase the reliability and availability of the turbine and are typical methods to reduce energy production costs and WT downtime. The IGBT switch’s open-circuit failure rate is significant compared to the overall fault rate in WTs. This paper discusses IGBT open-circuit FTC in back-to-back DFIG converters. In the proposed structure, the converter switch fault is first diagnosed using a fast and numerical method. In the first part, a method based on normalized phase currents, the absolute of the phase currents, and an adaptive threshold is used. The FTC system can be divided into two classes of redundancy and non-redundancy or into active and inactive classes. In this article, the proposed method is active and non-redundancy. In the second step, the FTC process is activated to compensate for the system degradation. In this method, the faulty leg is removed with the gate opening of both IGBTs in one leg by the controller, and one of the legs is positioned as a common leg between the two grid side and rotor side converters. The conventional method in this structure is to use Pulse Width Modulation (PWM) with a zero sequence signal. The novelty of the paper is the use of the proposed SVM vector control. The proposed structure is inexpensive. Furthermore, the fault diagnostic structure operates without additional sensors and the FTC structure operates with minimal hardware. To evaluate the proposed structure, a 2.5 MW turbine software simulator based on real data is used. The simulations show that the proposed method is effective and robust in FD and FTC and that the proposed method is successful in detecting multiple defects of the grid-side and rotor-side converters, as well as the defects of one leg. The proposed method can compensate for the open switch fault to construct three-phase output currents by comparing the numerical parameters. The ability of the proposed method is specified.
Keywords: Wind Turbine, DFIG, Fault Detection, Fault Tolerant Control, Back to Back Converter, Non-Redundant Topology
Full-Text [PDF 2429 kb]   (772 Downloads)    
Type of Study: Research |
Received: 2021/05/9 | Accepted: 2022/01/2 | Published: 2022/04/14
References
1. Bouscayrol, A., Francois, B., Delarue, P., & Niirane, J. (2005). Control implementation of a five-leg AC-AC converter to supply a three-phase induction machine. IEEE Transactions on Power Electronics, 20, 107 - 115. [DOI:10.1109/TPEL.2004.839826]
2. Campos-Delgado, U., Espinoza-Trejo, R., & Palacios, E. (2008). Fault-tolerant control in variable speed drives: a survey. IET Electric Power Applications, 2(2), 121 - 134. [DOI:10.1049/iet-epa:20070203]
3. Das, P. S., & Kim, K. H. (2014). Real-Time Multiple Open-Switch Fault Diagnosis in Three-phase AC/DC PWM Converter for PMSG Based Grid-Connected Wind Power Generation System. International Journal of Control and Automation, 7(9), 329-344. [DOI:10.14257/ijca.2014.7.9.29]
4. Das, P. S., & Kim, K. H. (2014). Voltage-based On-Line Fault Detection and Faulty Switch Identification under Multiple Open-Switches in Grid-Connected Wind Power Converter. International Journal of Control and Automation, 7(11), 401-416. [DOI:10.14257/ijca.2014.7.11.39]
5. Duan, P., Xie, K. G., Zhang, L., & Rong, X. (2010). Open-switch fault diagnosis and system reconfiguration of doubly fed wind power converter used in a microgrid. IEEE Transactions on Power Electronics, 26(3), 816-821. [DOI:10.1109/TPEL.2010.2095470]
6. Edorta, I., Andreu, J., Kortabarria, I., Ormaetxea, E., Martínez de Alegría, I., Luís Martín, J., & Ibañez, P. (2011). New fault tolerant matrix converter. Electric Power Systems Research, 81(2), 538-552. [DOI:10.1016/j.epsr.2010.10.028]
7. Freire, N. M., Estima, J. O., & Cardoso, A. J. (2012). Open-circuit fault diagnosis in PMSG drives for wind turbine applications. IEEE Transactions on Industrial electronics, 60(9), 3957-3967. [DOI:10.1109/TIE.2012.2207655]
8. Göksu, Ö., Altin, M., Fortmann, J., & Sørensen, E. (2016). Field Validation of IEC 61400-27-1 Wind Generation Type 3 Model With Plant Power Factor Controller. IEEE Transactions on Energy Conversion, 31(3), 1170-1178. [DOI:10.1109/TEC.2016.2540006]
9. Hemanth Kumar, B., Saravanan, B., Sanjeevikumar, P., & Blaabjerg, F. (2018). Review on Control Techniques and Methodologies For Maximum Power Extraction From Wind Energy Systems. IET Renewable Power Generation, 12(14), 1609-1622. [DOI:10.1049/iet-rpg.2018.5206]
10. Jacobina, B., de Araujo Ribeiro, L., Lima, N., & da Silva, C. (2003). Fault-tolerant reversible AC motor drive system. IEEE Transactions on Industry Applications, 39, 1077 - 1084. [DOI:10.1109/TIA.2003.814567]
11. Jlassi, I., Estima, J. O., El Khil, S. K., Bellaaj, N. M., & Cardoso, A. J. (2014). Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems. IEEE Transactions on Power Electronics, 30(5), 2689-2702. [DOI:10.1109/TPEL.2014.2342506]
12. Karimi, S., Gaillard, A., Poure, P., & Saadate, S. (2008). FPGA-based real-time power converter failure diagnosis for wind energy conversion systems. IEEE Transactions on Industrial Electronics, 55(12), 4299-4308. [DOI:10.1109/TIE.2008.2005244]
13. Karimi, S., Poure, P., & Saadate, S. (2008). FPGA-based fully digital fast power switch fault detection and compensation for three-phase shunt active filters. Electric Power Systems Research, 78(11), 1933-1940. [DOI:10.1016/j.epsr.2008.03.023]
14. Keyuan, H., Jingjia, L., & Shoudao, H. (2015). Converters open-circuit fault-diagnosis methods research for direct-driven permanent magnet wind power system. Transactions of China Electrotechnical Society, 30(16), 129-136.
15. Meradi, S., Benmansour, K., Herizi, K., Tadjine, M., & Boucherit, S. (2013). Sliding mode and fault tolerant control for multicell converter four quadrants. Electric Power Systems Research, 95, 28-139,. [DOI:10.1016/j.epsr.2012.08.014]
16. Olimpo, A., Jenkins, N., Ekanayake, J., Cartwright, P., & Hughes, M. (2011). Wind Energy Generation: Modeling and Control. John Wiley & Sons.
17. Sae-Kok, W. (2008). Converter fault diagnosis and post fault operation of a doubly-fed induction generator for a wind turbine. Ph.D. Thesis: University of Strathclyde. [DOI:10.1109/PEDS.2007.4487691]
18. Sae-Kok, W., Grant, D. M., & Williams, B. W. (2010). System reconfiguration under open-switch faults in a doubly fed induction machine. IET Renewable Power Generation, 4(5), 458-470. [DOI:10.1049/iet-rpg.2010.0005]
19. Shahbazi, M., Poure, P., Saadate, S., & Zolghadri, M. (2012). FPGA-based fast detection with reduced sensor count for a fault-tolerant three-phase converter. IEEE transactions on industrial informatics, 9(3), 1343-1350. [DOI:10.1109/TII.2012.2209665]
20. Shahbazi, M., Poure, P., Saadate, S., & Zolghadri, M. (2013). FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy. IEEE Transactions on Industrial Electronics, 60(8), 3360-3371. [DOI:10.1109/TIE.2012.2200214]
21. You, X., & Zhang, W. (2012). Fault diagnosis of frequency converter in wind power system based on SOM neural network. Procedia Engineering, 29, 3132-3136. [DOI:10.1016/j.proeng.2012.01.453]
22. Zhao, H., & Cheng, L. (2018). Open-Switch Fault-Diagnostic Method for Back-to-Back Converters of a Doubly Fed Wind Power Generation System. IEEE Transactions on Power Electronics, 33(4), 3452-3461. [DOI:10.1109/TPEL.2017.2705985]
23. Zhao, H., & Cheng, L. (2017). Open-circuit faults diagnosis in back-to-back converters of DF wind turbine. IET Renewable Power Generation, 11(4), 417-424. [DOI:10.1049/iet-rpg.2016.0150]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamarzarrin M, Refan M H, Amiri P. Fault Diagnostic and Fault Tolerant Control of DFIG Back to Back Converter. ieijqp 2022; 11 (1) :126-138
URL: http://ieijqp.ir/article-1-815-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (4-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4710