[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 3 (9-2020) ::
ieijqp 2020, 9(3): 68-80 Back to browse issues page
Smart load shedding in distribution networks considering the importance of loads
Salman Sanaei , Mahmud-reza Haghifam * 1, Amir Safdarian
Abstract:   (3168 Views)
One of the most important tasks of operators in distribution companies is to restoration after a fault in the network. In load restoration schemes, in addition to observing the load flow constraints, it is necessary to maintain the grid structure radially and, most importantly, observing the balance of consumption with the possibility of providing load due to the limitations of the backup feeder (or distributed resource constraints). This paper presents a new approach called smart load shedding in distribution networks, which aims to design a smart load shedding module in situations where it is not possible to provide load after a network failure. In this case, the network load restoration will be provided at the lowest outage cost and in the shortest possible time to maximize customer satisfaction. In order to validate the proposed method, the level of automation of the sample distribution network for smart control of loads is defined in three scenarios. The types of loads available in smart homes are also prioritized and categorized into three categories of adjustable, interruptible, and shiftable loads. The proposed method is coded in the MATLAB software environment. To demonstrate the effectiveness of the proposed model, simulation is implemented on an RBTS system. The results show the effectiveness of the proposed method in reducing costs and improving the restoration management of the distribution system.
Keywords: Load restoration, Smart load shedding, Reliability of distribution networks, Smart home
Full-Text [PDF 1984 kb]   (987 Downloads)    
Type of Study: Research |
Received: 2020/02/16 | Accepted: 2020/06/21 | Published: 2020/08/31
References
1. [1] Chen, Bo, et al. "Toward a MILP modeling framework for distribution system restoration." IEEE Transactions on Power Systems 34.3 (2018): 1749-1760. [DOI:10.1109/TPWRS.2018.2885322]
2. [2] López, Juan Camilo, et al. "Optimal restoration/maintenance switching sequence of unbalanced three-phase distribution systems." IEEE Transactions on Smart Grid 9.6 (2018): 6058-6068.‏ [DOI:10.1109/TSG.2017.2703152]
3. [3] Sharma, Anurag, Anupam Trivedi, and Dipti Srinivasan. "Multi-stage restoration strategy for service restoration in distribution systems considering outage duration uncertainty." IET Generation, Transmission & Distribution 12.19 (2018): 4319-4326.‏ [DOI:10.1049/iet-gtd.2018.5915]
4. [4] Chen, Bo, et al. "Sequential service restoration for unbalanced distribution systems and microgrids." IEEE Transactions on Power Systems 33.2 (2017): 1507-1520.‏ [DOI:10.1109/TPWRS.2017.2720122]
5. [5] Sun, Wei, et al. "Optimal distribution system restoration using phevs." IET Smart Grid 2.1 (2018): 42-49.‏ [DOI:10.1049/iet-stg.2018.0054]
6. [6] Chen, Kening, et al. "Robust restoration decision-making model for distribution networks based on information gap decision theory." IEEE Transactions on Smart Grid 6.2 (2014): 587-597.‏ [DOI:10.1109/TSG.2014.2363100]
7. [7] Wang, Feng, et al. "A multi-stage restoration method for medium-voltage distribution system with DGs." IEEE Transactions on Smart Grid 8.6 (2016): 2627-2636.‏ [8] Dimitrijevic, Srdjan, and Nikola Rajakovic. "Service restoration of distribution networks considering switching operation costs and actual status of the switching equipment." IEEE Transactions on Smart Grid 6.3 (2015): 1227-1232.‏ https://doi.org/10.1109/TSG.2014.2385309 [DOI:10.1109/TSG.2016.2532348]
8. [9] Chen, Bo, et al. "Multi-time step service restoration for advanced distribution systems and microgrids." IEEE Transactions on Smart Grid 9.6 (2018): 6793-6805.‏ [DOI:10.1109/TSG.2017.2723798]
9. [10] Sekhavatmanesh, Hossein, and Rachid Cherkaoui. "Distribution Network Restoration in a Multiagent Framework Using a Convex OPF Model." IEEE Transactions on Smart Grid 10.3 (2018): 2618-2628. ‏ [DOI:10.1109/TSG.2018.2805922]
10. [11] Hafez, Ahmed Abel, Walid A. Omran, and Yasser G. Hegazy. "A decentralized technique for autonomous service restoration in active radial distribution networks." IEEE Transactions on Smart Grid 9.3 (2016): 1911-1919.‏ [DOI:10.1109/TSG.2016.2602541]
11. [12] Sekhavatmanesh, Hossein, and Rachid Cherkaoui. "Optimal infrastructure planning of active distribution networks complying with service restoration requirements." IEEE Transactions on Smart Grid 9.6 (2018): 6566-6577.‏ [DOI:10.1109/TSG.2017.2716192]
12. [13] Sekhavatmanesh, Hossein, and Rachid Cherkaoui. "Analytical Approach for Active Distribution Network Restoration Including Optimal Voltage Regulation." IEEE Transactions on Power Systems 34.3 (2018): 1716-1728.‏ [DOI:10.1109/TPWRS.2018.2889241]
13. [14] Riahinia, Shahin, et al. "Load service restoration in active distribution network based on stochastic approach." IET Generation, Transmission & Distribution 12.12 (2018): 3028-3036.‏ [DOI:10.1049/iet-gtd.2017.0684]
14. [15] Sampaio, Raimundo F., et al. "Automatic restoration system for power distribution networks based on multi-agent systems." IET Generation, Transmission & Distribution 11.2 (2017): [DOI:10.1049/iet-gtd.2016.1018]
15. ‏
16. [16] مسعود زادسر، محمود رضا حقی فام، »تأثیر استراتژی مدیریت خودکار خروج و خودترمیمی بر قابلیت اطمینان شبکه¬های توزیع هوشمند تحت نفوذ منابع انرژی گسترده«، مجله مهندسی برق دانشگاه تبریز، جلد XX، شماره XX، 1396.
17. [17] حسین نصرت پور، علی زنگنه، »خودترمیمی بهینه شبکه¬های توزیع هوشمند مبتنی بر گراف درخت پوشا و بهبود قابلیت اطمینان شبکه«، مجله مهندسی برق و الکترونیک، جلد 16، شماره اول، 1398.
18. [18] داریوش نظرپور، افشین محبوب خواه، »بررسی تاثیر عدم قطعیت بار بر اولویت اجرای برنامه¬های پاسخگویی بار«، نشریه علمی پژوهشی مهندسی و مدیریت انرژی، سال هفتم، شماره چهارم، صفحه 20، 1396.
19. [19] محسن کجوری نفت چالی، علیرضا فریدونیان، حمید لسانی، »ارائه روشی تطبیقی مبتنی بر تئوری گراف برای ارزیابی میزان اثرپذیری مشترکین در نتیجه مشارکت در پاسخگویی بار«، نشریه علمی-پژوهشی کیفیت و بهره وری صنعت برق ایران، سال ششم، شماره 12، 1396.
20. [20] جواد صائبی، محمد حسین جاویدی، »ارزیابی اقتصادی پاسخگویی بار در حضور مقادیر بالای انرژی باد در سیستم قدرت«، نشریه علمی-پژوهشی کیفیت و بهره وری صنعت برق ایران، سال دوم، شماره چهارم، 1392.
21. [21] حسن جلیلی، محمد کاظم شیخ الاسلامی، محسن پارسا مقدم، »مدل سازی برنامه های پاسخگویی بار با استفاده از مفهوم کشش پذیری کارا«، نشریه علمی-پژوهشی کیفیت و بهره وری صنعت برق ایران، سال پنجم، شماره دهم، 1395.
22. [22] فرید حمزه اقدم، نوید تقی زادگان کلانتری، »مدیریت انرژی در ریزشبکه¬های چندگانه با در نظر گرفتن قیود پخش بار و برنامه های پاسخگویی بار«، نشریه علمی پژوهشی کیفیت و بهره وری صنعت برق ایران، سال ششم، شماره دوازدهم، 1396.
23. [23] محمد حسین صالح نژاد آریانی، محسن قاینی، »ارائه الگوریتم کنترل سطح مصرف مشترکین توزیع دارای کنتور هوشمند و محاسبه پاداش همکاری«، مجله مهندسی برق دانشگاه تبریز، جلد 49، شماره 3، 1398.
24. [24] Ferreira, Lucas Roberto, Alexandre Rasi Aoki, and Germano Lambert-Torres. "A Reinforcement Learning Approach to Solve Service Restoration and Load Management Simultaneously for Distribution Networks." IEEE Access 7 (2019): 145978-145987. ‏ [DOI:10.1109/ACCESS.2019.2946282]
25. [25] Zhu, Junpeng, Yue Yuan, and Weisheng Wang. "An exact microgrid formation model for load restoration in resilient distribution system." International Journal of Electrical Power & Energy Systems 116 (2020): 105568.‏ [DOI:10.1016/j.ijepes.2019.105568]
26. [26] Gilani, Mohammad Amin, Ahad Kazemi, and Mostafa Ghasemi. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources." Energy 191 (2020): 116442.‏ [DOI:10.1016/j.energy.2019.116442]
27. [27] Nozhati, Saeed, et al. "Optimal stochastic dynamic scheduling for managing community recovery from natural hazards." Reliability Engineering & System Safety 193 (2020): 106627.‏ [DOI:10.1016/j.ress.2019.106627]
28. [28] Choopani, Keyvan, Mahdi Hedayati, and Reza Effatnejad.
29. "Self-healing optimization in active distribution network to improve reliability, and reduction losses, switching cost and load shedding." International Transactions on Electrical Energy Systems (2020).‏



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sanaei S, Haghifam M, Safdarian A. Smart load shedding in distribution networks considering the importance of loads. ieijqp 2020; 9 (3) :68-80
URL: http://ieijqp.ir/article-1-721-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 3 (9-2020) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4645