[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 2 (6-2020) ::
ieijqp 2020, 9(2): 24-35 Back to browse issues page
An Online Free Penetration Multi-Stage Fuse Saving Protection Scheme in Distribution Systems with Photovoltaic Sources
Mehran Rahimi1 , Bahador Fani1 , Majid Moazzami2 , Majid Dehghani1 , Ghazanfar Shahgholian * 1
1- Islamic Azad University
2- Najafabad Branch
Abstract:   (3174 Views)
In this paper, a multi-stage protective scheme is proposed to maintain the fuse and reclosers coordination. The proposed method operates online and proportional to the photovoltaic sources penetration rate. In the first step, a non-standard Current - Time - Voltage curve is used for fuse saving. If the new calculated TDS from the first stage is not implementable to the reclosers, the second stage of the protection scheme will be activated, and the fault current contribution of photovoltaic sources decrease proportional to inverter PCC voltage. It should be noted that the proposed method is a combitionary method that in the first step, the effect of reclosers sensitivity in modifying the reclosers fast characteristics is taken into account in compared to other schemes presented in this regard, and in the second step, there is less limitation on the output power of PV sources under fault conditions than other inverter current control presented equations. It It is noteworthy that in order to implement the proposed protection method, there is no need to telecommunication infrastructure. The ETAP software simulation results validates the proposed scheme effectively.
Keywords: : Radial Distribution system, Two-Stage Protection Scheme, Photovoltaic Distributed Generation
Full-Text [PDF 1086 kb]   (941 Downloads)    
Type of Study: Research |
Received: 2019/08/9 | Accepted: 2020/05/9 | Published: 2020/06/10
References
1. [1] شمس¬نیا ع.، حسینی س.ح.، دانیالی س.، "مدلسازی و شبیه‌سازی اینورتر هیبرید با منابع انرژی تجدید پذیر سلول خورشیدی و توربین بادی مجهز به الگوریتم MPPT بهبودیافته"، نشریه کیفیت و بهره¬وری صنعت برق ایران، سال: 1، شماره: 2، ص: 8-18، زمستان 1391.
2. [2] باقری-طولابی ه.، شاکرمی م.، "ترکیب جدیدی از سیستم استنتاج فازی و الگوریتم علف‌های هرز به منظور بازآرایی همزمان با جایابی و تعیین ظرفیت بهینه تولیدات پراکنده در شبکه‌های توزیع"، نشریه روش¬های هوشمند در صنعت برق، سال: 6، شماره: 21، ص.: 20-13، بهار 1394.
3. [3] روزبهی ش.، مرادی م.ح.، "بهینه سازی عملکرد واحدهای تولید پراکنده در یک بازار رقابتی با ترکیب تئوری بازی و الگوریتم تکاملی"، نشریه کیفیت و بهره¬وری صنعت برق ایران، سال: 5، شماره: 9، ص: 112-122، بهار و تابستان 1395.
4. [4] بیابانی ن.، رمضانی م.، فلقی ح.، "افزایش نفوذ منابع تولید پراکنده توسط جایابی هم‌زمان منابع تولید پراکنده و سیستم‌های ذخیره‌ساز انرژی در شبکه‌های توزیع"، نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال: 12، شماره: 1، ص.: 14-24، بهار 1393.
5. [5] G. Shahgholian, Z. Azimi, "Analysis and design of a DSTATCOM based on sliding mode control strategy for improvement of voltage sag in distribution systems", Electronics, Vol. 5, No. 3, pp. 1-12, 2016. [DOI:10.3390/electronics5030041]
6. [6] K. Khani, G. Shahgholian, "Analysis and optimization of frequency control in isolated microgrid with double-fed induction-generators based wind turbine", Journal of International Council on Electrical Engineering, Vol. 9, No. 1, pp. 24-37, 2019. [DOI:10.1080/22348972.2018.1564547]
7. [7] K. I. Jennette, C. D. Booth, F. Coffele, A. J. Roscoe, "Investigation of the sympathetic trippi¬n-g problem in power systems with large penet¬rati-ons of distributed generation", IET Genera¬tion, Transmission and Distribution, Vol. 9, No. 4, pp.379-385, 2015. [DOI:10.1049/iet-gtd.2014.0169]
8. [8] T. Mashau, S. Kibaara, S. Chowdhury, S.P. Chowdhury, "Impact of distributed generation on protection coordination in radial distribution Feeder", Proceeding of the IEEE/UPEC, pp. 1-5, Soest, Germany, 2011.
9. [9] R. C. Dugan, D. T. Rizy, "Electric distribution protection problems associated with the interconnection of small, dispersed generation devices", IEEE Trans. on Power Apparatus and Systems, Vol. 103, No. 6, pp. 1121-1127, 1984. [DOI:10.1109/TPAS.1984.318438]
10. [10] J. F. Witte, S. R. Mendis, M. T. Bishop, J. A. Kischefsky, "Computer-aided recloser applica-tions for distribution systems", IEEE Computer Applications in Power, Vol. 5, No. 3, pp. 27-32, 1992. [DOI:10.1109/67.143271]
11. [11] P. H. Shah, B. R. Bhalja, "New adaptive digital relaying scheme to tackle recloser-fuse misco-ordi¬nation during distributed generation in¬¬te¬rc¬on-nections", IET Generation, Transm¬iss¬i¬o¬n and Distribution, Vol. 8, No. 4, pp.682-688, 2014. [DOI:10.1049/iet-gtd.2013.0222]
12. [12] A. Conde, E. Vazque, "Operation logic prop¬os¬e¬d for time overcurrent relays", IEEE Trans. on Power Delivery, Vol. 22, No. 4, pp. 2034-2039, 2007. [DOI:10.1109/TPWRD.2007.905381]
13. [13] B. Hussain, S. M. Sharkh, S. Hussain, M. A. Abus¬ara, "An adaptive relaying scheme for fuse saving in distribution networks with distributed generation", IEEE Trans. on Power Delivery, Vol. 28, No. 2, pp. 669-677, 2013. [DOI:10.1109/TPWRD.2012.2224675]
14. [14] S. Jamali, H. Borhani-Bahabadi, "Protection method for radial distribution systems with DG using local voltage measurements", IEEE Trans. on Power Delivery, Vol. 34, pp. 651-660, 2019. [DOI:10.1109/TPWRD.2018.2889895]
15. [15] S. Jamali, H. Borhani-Bahabadi, "Non-communication protection method for meshed and radial distribution networks with synchrono-us-based DG", International Journal of Elect¬ri¬c-a¬l Power and Energy Systems, Vol. 93, pp. 468-478, 2017. [DOI:10.1016/j.ijepes.2017.06.019]
16. [16] فانی ب.، کرباسچی ع.، "یک طرح حفاظتی فیوز - ریکلوزر مبتنی بر مشخصه زمان - جریان- ولتاژ در سیستم¬هاي توزیع شامل منابع فتوولتاییک"، نشریه روش‌های هوشمند در صنعت برق، سال: 9، شماره 35، صفحه 11-18، پائیز 1397.
17. [17] حاجي¬محمدي ف.، فانی ب.، "هماهنگی تطبيقي فيوز و ريكلوزر در سيستم¬هاي توزيع با ضريب نفوذ بالاي منابع فتوولتاييك"، نشریه روش‌های هوشمند در صنعت برق، سال: 8، شماره 30، صفحه 23-32، تابستان 1396.
18. [18] حاجي¬محمدي ب.، فانی ب.، معظمی م.، "يك روش جديد هماهنگی هوشمند فیوز - ريکلوزر در سیستمهای توزيع با ضريب نفوذ زياد سلولهای فتوولتائیك"، نشریه هوش محاسباتی در مهندسی برق، سال: 9، شماره 1، صفحه 49-65، بهار 1397.
19. [19] M. Ebrahimpour, B. Vahidi, S. H. Hosseinian, "A hybrid superconducting fault current control¬l-er for DG networks and microgrids", IEEE Tra¬n-s. on Applied Superconductivity, Vol.23, No.5, pp.5604306-5604306, 2013. [DOI:10.1109/TASC.2013.2267776]
20. [20] R. K. Varma, S. A. Rahman, V. Atodaria, S. Mohan, T. Vanderheide, "Technique for fast detection of short circuit current in PV distribu¬ted generator", IEEE Power and Energy Techn¬olo¬gy Systems Journal, Vol. 3, No. 4, pp. 155-165, 2016. [DOI:10.1109/JPETS.2016.2592465]
21. [21] Rajaei, N., Ahmed, M.H., Salama, M.M.A., Varma, R.K., "Fault current management using inverter-based distributed generators in smart grids", IEEE Trans. on Smart Grid, Vol. 5, No. 5, pp. 2183-2193, 2014. [DOI:10.1109/TSG.2014.2327167]
22. [22] S. Chaitusaney, A. Yokoyama, "Prevention of reliability degradation from recloser-fuse misc¬oo¬-rdination due to distributed generation", IEEE Trans. on Power Delivery, Vol.23, No.4, pp.2545-2554, 2008. [DOI:10.1109/TPWRD.2007.915899]
23. [23] H.A. Abdel-Ghany, A.M. Azmy, N.I. Elkalashy, E.M. Rashad, "Optimizing DG penetration in distribution networks concerning protection sch¬e¬-m¬es and technical impact", Electric Power System Research, Vol. 11, pp. 113-122, 2015. [DOI:10.1016/j.epsr.2015.07.005]
24. [24] N. Rajaei, M. M. A. Salama, "Management of fault current contribution of synchronous DGs using inverter-based DGs", IEEE Trans. on Smart Grid, Vol. 6, No. 6, pp. 3073-3081, 2015. [DOI:10.1109/TSG.2015.2432759]
25. [25] E. Ebrahimi, M. J. Sanjari, G. B. Gharehpetian, "Control of three-phase inverter-based DG system during fault condition without changing protection coordination", International Journal of Electrical Power and Energy Systems, Vol. 63, pp. 814-823, Dec. 2014. [DOI:10.1016/j.ijepes.2014.05.058]
26. [26] V. C. Nikolaidis, E. Papanikolaou, A. S. Saf¬ig¬ia¬-nni, "A communication-assisted overcurrent protection scheme for radial distribution systems with distributed generation", IEEE Trans. on Smart Grid, Vol. 7, pp. 114-123, 2016. [DOI:10.1109/TSG.2015.2411216]
27. [27] A. Sinclair, D. Finney, D. Martin, et al, "Distance protection in distribution systems, how it assists with integrating distributed reso¬ur¬ces", IEEE Trans. on Industry Applications, Vol. 50, pp. 2186-2196, 2014. [DOI:10.1109/TIA.2013.2288426]
28. [28] K. Wheeler, M. Elsamahy, S. Faried, "Use of superconducting fault current limiters for miti-gation of distributed generation influences in radial distribution network fuse-recloser prote¬ct-ion systems", IET Generation, Trans¬miss¬ion & Distribution, Vol. 11, pp. 1605-1612, 2017. [DOI:10.1049/iet-gtd.2015.1156]
29. [29] D. K. Ibrahim, E. E. D. A. E. Zahab, S. A. E. A. Mostafa, "New coordination approach to mini-mize the number of re-adjusted relays when addi-ng DGs in interconnected power systems with a minimum value of fault current limiter", International Journal of Electrical Power and Energy Systems, Vol. 85, pp. 32-41, 2017. [DOI:10.1016/j.ijepes.2016.08.003]
30. [30] J. L. Blackburn, T. J. Domin, "Protective rela-ying: Principles and applications", CRC Press, Boca Raton, 4th edition, 2014. [DOI:10.1201/b16518]
31. [31] IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays, IEEE Stand¬ard C37, 112-1996.
32. [32] A. F. Naiem, Y. Hegazy, A. Y. Abdelaziz, M. A. Elsharkawy, "A classification technique for recloser-fuse coordination in distribution sys¬te¬ms with distributed generation", IEEE Trans. on Power Delivery, Vol. 27, No. 1, pp. 176-185, 2012. [DOI:10.1109/TPWRD.2011.2170224]
33. [33] M. Y. Shih, A. Conde, Z. Leonowicz, L. Martirano, "An adaptive overcurrent coordi¬nat¬i¬o¬n scheme to improve relay sensitivity and over¬co¬me drawbacks due to distributed generation in s¬m¬art grids", IEEE Trans. on Industry Appli¬ca¬ti¬o¬ns, Vol. 53, No. 6, pp. 5217- 5228, 2017. [DOI:10.1109/TIA.2017.2717880]
34. [34] IEEE 1547-2018, 'IEEE std 1547-2018 (revisi¬o¬n of IEEE Std 1547-2003), "IEEE standard for inter¬connection and interoperability of distri¬bute¬d energy resources with associated electric power systems interfaces", (IEEE, USA, 2018)
35. [35] S. Jamali, H. Borhani-Bahabadi, "A new reclo¬se¬r time-current-voltage characteristic for fuse saving in distribution networks with DG", IET Generation, Transmission and Distribution, Vol. 11, No. 1, pp. 272-279, 2017.



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi M, Fani B, Moazzami M, Dehghani M, Shahgholian G. An Online Free Penetration Multi-Stage Fuse Saving Protection Scheme in Distribution Systems with Photovoltaic Sources. ieijqp 2020; 9 (2) :24-35
URL: http://ieijqp.ir/article-1-657-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (6-2020) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.09 seconds with 40 queries by YEKTAWEB 4645