[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 2 (12-2019) ::
ieijqp 2019, 8(2): 40-64 Back to browse issues page
Providing a comprehensive energy management strategy for operation of multi-microgrids considering uncertainty of the fault occurrence
Peyman Bayat1 , Hossein Afrakhte * 1
1- Guilan university
Abstract:   (3183 Views)
Today, the increased use of distributed generation units along with the storage devices as well as telecommunication enhancements have led to the formation of microgrids and thus multi-microgrids (MMGs). In this type of networks, the probability of the fault occurrence in different places of the network is not out of expectation, and it can be argued that the failure of the network not only increases the losses, reduces the efficiency and increases the outage, but also, it disrupts network operation and makes the operation process of the system more complex. From this point of view and with the aim of filling the existing research gaps, in this paper a comprehensive energy management strategy for operation of multi-microgrids considering uncertainty of the fault occurrence in the different part of the system is presented. In the proposed comprehensive energy management strategy, a novel problem formulation for both self-healing and cost effective operation, as well as the network operators’ relationship are considered. In this situation, at first, an appropriate method is proposed to address the contingency faults which can be occurred in the different places of the network, then intended energy management strategy is implemented. The proposed methodology is implemented in the MATLAB software environment and its effectiveness is demonstrated in the modified reliability based test system with considering some other traditional methods.
Keywords: Operation, Multi-microgrids (MMGs), Reliability, Energy management, Distributed generation units
Full-Text [PDF 3452 kb]   (606 Downloads)    
Type of Study: Research |
Received: 2019/06/6 | Accepted: 2019/08/24 | Published: 2019/11/27
References
1. [1] Nosratabadi, S. M., Hooshmand, R. A., Gholipour, E., "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems", Renewable and Sustainable Energy Reviews, Vol. 67, pp. 341-363, 2017. [DOI:10.1016/j.rser.2016.09.025]
2. [2] Hirscha, A., Paraga, Y., Guerrerobm, J., "Microgrids: A review of technologies, key drivers, and outstanding issues", Renewable and Sustainable Energy Reviews, Vol. 90, pp. 402-411, 2018. [DOI:10.1016/j.rser.2018.03.040]
3. [3] Xua Z., Yanga P., Zhenga C., Zhanga Y., Penga J., Zenga Z., "Analysis on the organization and Development of multi-microgrids", Renewable and Sustainable Energy Reviews, Vol. 81, pp. 2204-2216, 2018. [DOI:10.1016/j.rser.2017.06.032]
4. [4] Shi, W., Xie, X., Chu, C. C., Gadh, R., "Distributed optimal energy management in microgrid", IEEE Transactions on Smart Grid, Vol. 6, No. 3, pp. 1137-1146, 2015. [DOI:10.1109/TSG.2014.2373150]
5. [5] Farzin, H., Fotuhi-Firuzabad M., Moeini-Aghtaie M., "Role of Outage Management Strategy in Reliability Performance of Multi-Microgrid Distribution Systems", IEEE Transactions on Power Systems, Vol. 33, No. 3, pp. 2359-2369, 2018. [DOI:10.1109/TPWRS.2017.2746180]
6. [6] Liu, Y., Li, Y., Gooi, H. B., Jian, Y., Xin, H., Jiang, X., Pan, J., "Distributed Robust Energy Management of a Multi-Microgrid System in the Real-Time Energy Market", IEEE Transactions on Sustainable Energy, Vol. 10, No. 1, pp. 396-406, 2019. [DOI:10.1109/TSTE.2017.2779827]
7. [7] Aghdam, F. H., Ghaemi, S., Kalantari, N. T., "Evaluation of loss minimization on the energy management of multi-microgrid based smart distribution network in the presence of emission constraints and clean productions", Journal of Cleaner Production, Vol. 196, pp.185-201, 2018. [DOI:10.1016/j.jclepro.2018.06.023]
8. [8] Wang, Z., Chen, B., Wang, J., kim, J., "Decentralized energy management system for networked microgrids in grid-connected and islanded modes", IEEE Transactions on Smart Grid, Vol, 7, No. 2, pp. 1097-1105, 2016. [DOI:10.1109/TSG.2015.2427371]
9. [9] Wang, Z., Chen, B., Wang, J., "Coordinated Energy Management of Networked Microgrids in Distribution Systems", IEEE Transactions on Smart Grid, Vol. 6, No. 1, pp. 45-53, 2015. [DOI:10.1109/TSG.2014.2329846]
10. [10] Zhanga, B., Lia, Q., Wangb, L., Fengc, W., "Robust optimization for energy transactions in multi-microgrids under uncertainty", Applied Energy, Vol. 217, pp. 346-360, 2018. [DOI:10.1016/j.apenergy.2018.02.121]
11. [11] Zhou, X., Ai, Q., Wang, H., "A distributed dispatch method for microgrid cluster considering demand response", International Transactions on Electrical Energy Systems, Vol. 28, No. 12, e2634, 2018. [DOI:10.1002/etep.2634]
12. [12] فرید حمزه اقدم، نوید تقی¬زادگان کلانتری، "مدیریت انرژی در ریزشبکه‌های چندگانه با در نظر گرفتن قیود پخش بار و پاسخ‌گویی بار"، نشریه کیفیت و بهره وری صنعت برق ایران، 6 (12)، 86-97، 1396.
13. [13] Duan, Y., Gong, Y., Tan, X., Wang, H., Li, Q., "Probabilistic power flow calculation in microgrid based on Monte-Carlo simulation", Transaction of China Electro technical Society, Vol. 26, No. 1, pp. 274-278, 2011.
14. [14] Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M., "Enhancing power system resilience through hierarchical outage management in multi-microgrids", IEEE Transaction on Smart Grid, Vol. 7, No. 6, pp. 2869-2879, 2017. [DOI:10.1109/TSG.2016.2558628]
15. [15] Wang, Z., Chen, B., Wang, J., Chen, C., "Networked Microgrids for Self-Healing Power Systems", IEEE Transactions on Smart Grid, Vol. 7, No. 1, pp. 310-319, 2016. [DOI:10.1109/TSG.2015.2427513]
16. [16] Hamzeh Aghdam, F., Salehi, J., Ghaemi S., "Contingency Based Energy Management of Multi-Microgrid based Distribution Network", Sustainable Cities and Society, Vol. 41, pp. 265-274, 2018. [DOI:10.1016/j.scs.2018.05.019]
17. [17] علی¬محمد حریری، مریم اخوان حجازی، حامد هاشمی دزکی، "مدل‌سازی مناسب بار در ارزیابی قابلیت اطمینان شبکه¬های هوشمند توزیع انرژی الکتریکی با دیدگاه افزایش سرعت و حفظ دقت محاسبات"، نشریه کیفیت و بهره وری صنعت برق ایران، 7 (14)، 95-112، 1397.
18. [18] Billinton, R., Sankarakrishnan, A., "A system state transition sampling technique for reliability evaluation", Reliability Engineering and System Safe, Vol. 44, pp. 131-134, 1994. [DOI:10.1016/0951-8320(94)90004-3]
19. [19] Atwa, Y. M., "Supply Adequacy Assessment of Distribution System Including Wind-Based DG During Different Modes of Operation", IEEE Transactions on Power Systems, Vol. 25, No. 1, pp. 78-86, 2010. [DOI:10.1109/TPWRS.2009.2030282]
20. [20] Li, W., Reliability assessment of electrical power systems using Monte Carlo methods, Springer Science & Business Media, 1994.
21. [21] Al-Muhaini, M., Heydt, G. T., "Evaluating Future Power Distribution System Reliability Including Distributed Generation", IEEE Transactions on power delivery, vol. 28, no. 4, pp. 2264-2272, 2013. [DOI:10.1109/TPWRD.2013.2253808]
22. [22] Billinton, R., Allan, R. N., Reliability evaluation of power systems, Plenum press, Vol. 2, New York, 1984. [DOI:10.1007/978-1-4615-7731-7]
23. [23] Billinton, R., Jonnavithula, S., "A Test System For Teaching Overall Power System Reliability Assessment", IEEE Transactions on Power Systems, Vol. 11, No. 4, pp. 1670-1676, 1996. [DOI:10.1109/59.544626]
24. [24] فرهاد صمدی قاضی جهانی، جواد صالحی، نوید تقی زادگان کلانتری، "طراحی ریزشبکه‌های چندگانه مبتنی بر سناریو با نفوذ بالای منابع تجدیدپذیر و در نظرگرفتن عدم قطعیت سمت تقاضا و تولید"، نشریه کیفیت و بهره وری صنعت برق ایران، 7 (13)، 54-67، 1397.
25. [25] Glover, j. D., Sarma, M. S., Overbye, T. J., Power System Analysis and Design, Fifth Edition, Global Engineering, 2011.
26. [26] Xiao, F., Ai, Q., "New modeling framework considering economy, uncertainty, and security for estimating the dynamic interchange capability of multi-microgrids", Electric Power Systems Research, Vol. 152, pp. 237-248, 2017. [DOI:10.1016/j.epsr.2017.07.001]
27. [27] Sathyanarayana, B. R., Sensitivity-based Pricing and Multiobjective Control for Energy Management in Power Distribution Systems, Ph.D. Thesis, Arizona state university, 2012.
28. [28] Jager, D., Andreas, A., NREL national wind technology center (NWTC), NREL Report No. DA-5500-56489, https://midcdmz.nrel.gov/nwtc_m2/
29. [29] Wilcox S. National solar radiation database. National Renewable Energy Laboratory, https://rredc.nrel.gov/solar/old_data/nsrdb/.
30. [30] Bayat, P., Baghramian, A., Bayat, P., "Implementation of hybrid electric vehicle energy management system for two input power sources", Journal of Energy Storage, Vol. 17, pp. 423-440, 2018. [DOI:10.1016/j.est.2018.03.019]
31. [31] Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M., "Reliability Studies of Modern Distribution Systems Integrated with Renewable Generation and Parking Lots", IEEE Transactions on Sustainable Energy, Vol. 8, No. 1, pp. 431-440, 2017. [DOI:10.1109/TSTE.2016.2598365]
32. [32] Bayat, P., Afrakhte, H., Bayat, P., "A hybrid shuffled frog leaping algorithm and intelligent water drops optimization for efficiency maximization in smart microgrids considering EV energy storage state of health", Journal of Intelligent & Fuzzy Systems, Vol. 35, No, 5, pp. 5619-5634, 2018. [DOI:10.3233/JIFS-171023]
33. [33] Zhu, J., Gu, W., Jiang, P., Song, S., Liu, H., Liang, H., Wu, M., "Dynamic Island Partition for Distribution System with Renewable Energy to Decrease Customer Interruption Cost", Journal of Electrical Engineering and Technology, Vol. 12, No. 6, pp. 2146-2156, 2017.
34. [34] Jalali, M., Zare, K., Seyedi, H., "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program" Energy, Vol. 141, pp. 1059-1071, 2017. [DOI:10.1016/j.energy.2017.09.145]
35. [35] Allan, R. N., Billinton, R., Sjarief, I., Goel, L., So, K. S., "A reliability test system for educational purposes-basic distribution system data and results", IEEE Transactions on Power Systems, Vol. 6, No. 2, pp. 813-820, 1991. [DOI:10.1109/59.76730]
36. [36] Chowdhury, A., Koval, D., Power distribution system reliability: practical methods and applications, John Wiley & Sons, Vol. 48, 2011.
37. [37] Javidsharifia, M., Niknama, T., Aghaeia, J., Mokryanib, G., Papadopoulosc, P., "Multi-objective day-ahead scheduling of microgrids using modified grey wolf optimizer algorithm", Journal of Intelligent & Fuzzy Systems, Vol. 36, No. 3, pp. 2857-2870, 2019. [DOI:10.3233/JIFS-171688]
38. [38] Liu, Y., Guo, L., Wang, C., "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids", Applied Energy, Vol. 228, pp. 130-140, 2018. [DOI:10.1016/j.apenergy.2018.04.087]
39. [39] Komen, A., Benders' Decomposition vs. Column & Constraint Generation, a Closer Look, Master Thesis, Utrecht university, 2017.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bayat P, Afrakhte H. Providing a comprehensive energy management strategy for operation of multi-microgrids considering uncertainty of the fault occurrence. ieijqp 2019; 8 (2) :40-64
URL: http://ieijqp.ir/article-1-635-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (12-2019) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4645