[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 3 (1-2020) ::
ieijqp 2020, 8(3): 10-21 Back to browse issues page
A New Framework for Increasing the Sustainability of Infrastructure Measurement of Smart Grid
Mohammad Hossein Yaghmaee1 , Mohammad Rezaee * 1
1- Ferdowsi University of Mashhad (FUM)
Abstract:   (3089 Views)
Advanced Metering Infrastructure (AMI) is one of the most significant applications of the Smart Grid. It is used to measure, collect, and analyze data on power consumption.  In the AMI network, the smart meters traffics are aggregated in the intermediate aggregators and forwarded to the Meter Data Management System (MDMS). The infrastructure used in this network should be reliable, real-time and scalable in order to guarantee reliable and timely transmission of information. In this paper, we propose an SDN (Software-Defined Network)-based infrastructure for the AMI networks which can enhance the reliability of the network and reduce network latency. In the proposed method, we have proposed a new method in which a dynamic aggregator is assigned to each smart meter, and, in addition, an appropriate routing algorithm is proposed in order to ensure the timely and reliable transmission of smart meter data to MDMS. The bandwidth required for each flow will be reserved in all links along the path. This approach increases the reliability of AMI network and satisfies the flow requirements such as bandwidth and delay. The simulation results show that proposed infrastructure significantly improves the AMI reliability and reduces the sensitivity to aggregator down.
Keywords: Smart Grid, Aggregators, Software Defined Networks (SDN), Optimization, Network
Full-Text [PDF 1598 kb]   (708 Downloads)    
Type of Study: Research |
Received: 2019/06/1 | Accepted: 2019/12/7 | Published: 2020/02/1
References
1. [1] Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart Grid - The New and Improved Power Grid: A Survey. IEEE Communications Surveys & Tutorials, 14(4), 944-980. doi: 10.1109/surv.2011.101911.00087 [DOI:10.1109/SURV.2011.101911.00087]
2. [2] Borenstein, S. (2005). The Long-Run Efficiency of Real-Time Electricity Pricing. The Energy Journal, 26(3). doi: 10.5547/issn0195-6574-ej-vol26-no3-5 [DOI:10.5547/ISSN0195-6574-EJ-Vol26-No3-5]
3. [3] Jianchao Zhang, Boon-Chong Seet, Tek-Tjing Lie, & Chuan Heng Foh. (2013). Opportunities for Software-Defined Networking in Smart Grid. 2013 9Th International Conference on Information, Communications & Signal Processing. doi: 10.1109/icics.2013.6782793 [DOI:10.1109/ICICS.2013.6782793]
4. [4] Dorsch, N., Kurtz, F., Georg, H., Hagerling, C., & Wietfeld, C. (2014). Software-defined networking for Smart Grid communications: Applications, challenges and advantages. 2014 IEEE International Conference on Smart Grid Communications (Smartgridcomm). doi: 10.1109/smartgridcomm.2014.7007683 [DOI:10.1109/SmartGridComm.2014.7007683]
5. [5] Irfan, A., Taj, N., & Mahmud, S. (2015). A Novel Secure SDN/LTE Based Architecture for Smart Grid Security. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. doi: 10.1109/cit/iucc/dasc/picom.2015.112 [DOI:10.1109/CIT/IUCC/DASC/PICOM.2015.112]
6. [6] Sydney, A., Ochs, D., Scoglio, C., Gruenbacher, D., & Miller, R. (2014). Using GENI for experimental evaluation of Software Defined Networking in smart grids. Computer Networks, 63, 5-16. doi: 10.1016/j.bjp.2013.12.021 [DOI:10.1016/j.bjp.2013.12.021]
7. [7] Parra, G. D., Rad, P., & Choo, K. R. (2019). Implementation of deep packet inspection in smart grids and industrial Internet of Things: Challenges and opportunities. Journal of Network and Computer Applications, 135, 32-46. doi:10.1016/j.jnca.2019.02.022 [DOI:10.1016/j.jnca.2019.02.022]
8. [8] Rinaldi S, et al., (2018). Characterization of IP-Based Communication for Smart Grid Using Software-Defined Networking. IEEE Transactions on Instrumentation and Measurement, 67(10), 2410-2419. doi: 10.1109/TIM.2018.2831318 [DOI:10.1109/TIM.2018.2831318]
9. [9] Montazerolghaem, A., Yaghmaee Moghaddam, M., & Leon-Garcia, A. (2018). OpenAMI: Software-Defined AMI Load Balancing. IEEE Internet of Things Journal, 5(1), 206-218. doi: 10.1109/jiot.2017.2778006 [DOI:10.1109/JIOT.2017.2778006]
10. [10] Saputro N, Akkaya K, Uludag S, A survey of routing protocol for smart grid communications. Computer Networks 2012; 56: 2742-2711. [DOI:10.1016/j.comnet.2012.03.027]
11. [11] Kabalci, Y. (2016). A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews, 57, 302-318. doi: 10.1016/j.rser.2015.12.114 [DOI:10.1016/j.rser.2015.12.114]
12. [12] Khan, R., & Khan, J. (2013). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825-845. doi: 10.1016/j.comnet.2012.11.002 [DOI:10.1016/j.comnet.2012.11.002]
13. [13] Niyato, D., Dong, Q., Wang, P., & Hossain, E. (2013). Optimizations of Power Consumption and Supply in the Smart Grid: Analysis of the Impact of Data Communication Reliability. IEEE Transactions on Smart Grid, 4(1), 21-35. doi: 10.1109/tsg.2012.2224677 [DOI:10.1109/TSG.2012.2224677]
14. [14] Gkatzikis, L., Koutsopoulos, I., & Salonidis, T. (2013). The Role of Aggregators in Smart Grid Demand Response Markets. IEEE Journal on Selected Areas in Communications, 31(7), 1247-1257. doi: 10.1109/jsac.2013.130708 [DOI:10.1109/JSAC.2013.130708]
15. [15] Wu, C., Mohsenian-Rad, H., & Huang, J. (2012). Vehicle-to-Aggregator Interaction Game. IEEE Transactions on Smart Grid, 3(1), 434-442. doi: 10.1109/tsg.2011.2166414 [DOI:10.1109/TSG.2011.2166414]
16. [16] Vatanparvar, K., & Al Faruque, M. (2015). Design Space Exploration for the Profitability of a Rule-Based Aggregator Business Model within a Residential Microgrid. IEEE Transactions on Smart Grid, 6(3), 1167-1175. doi: 10.1109/tsg.2014.2380318 [DOI:10.1109/TSG.2014.2380318]
17. [17] Lampropoulos, I., Baghina, N., Kling, W., & Ribeiro, P. (2013). A Predictive Control Scheme for Real-Time Demand Response Applications. IEEE Transactions on Smart Grid, 4(4), 2049-2060. doi: 10.1109/tsg.2013.2257891 [DOI:10.1109/TSG.2013.2257891]
18. [18] Tanakornpintong, S., Tangsunantham, N., Sangsuwan, T., & Pirak, C. (2017). Location optimization for data concentrator unit in IEEE 802.15.4 smart grid networks. 2017 17th International Symposium on Communications and Information Technologies (ISCIT). doi: 10.1109/iscit.2017.8261218 [DOI:10.1109/ISCIT.2017.8261218]
19. [19] Rolim, G., Passos, D., Moraes, I., & Albuquerque, C. (2015). Modelling the Data Aggregator Positioning Problem in Smart Grids. 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. doi: 10.1109/cit/iucc/dasc/picom.2015.90 [DOI:10.1109/CIT/IUCC/DASC/PICOM.2015.90]
20. [20] Khalifa, T., Abdrabou, A., Naik, K., Alsabaan, M., Nayak, A., & Goel, N. (2014). Split- and Aggregated-Transmission Control Protocol (SA-TCP) for Smart Power Grid. IEEE Transactions on Smart Grid, 5(1), 381-391. doi: 10.1109/tsg.2013.2279756 [DOI:10.1109/TSG.2013.2279756]
21. [21] Rongxing Lu, Xiaohui Liang, Xu Li, Xiaodong Lin, & Xuemin Shen. (2012). EPPA: An Efficient and Privacy-Preserving Aggregation Scheme for Secure Smart Grid Communications. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1621-1631. doi: 10.1109/tpds.2012.86 [DOI:10.1109/TPDS.2012.86]
22. [22] Weiwei Jia, Haojin Zhu, Zhenfu Cao, Xiaolei Dong, & Chengxin Xiao. (2014). Human-Factor-Aware Privacy-Preserving Aggregation in Smart Grid. IEEE Systems Journal, 8(2), 598-607. doi: 10.1109/jsyst.2013.2260937 [DOI:10.1109/JSYST.2013.2260937]
23. [23] Bao, H., & Lu, R. (2015). A New Differentially Private Data Aggregation with Fault Tolerance for Smart Grid Communications. IEEE Internet of Things Journal, 2(3), 248-258. doi: 10.1109/jiot.2015.2412552 [DOI:10.1109/JIOT.2015.2412552]
24. [24] Mondal, A., & Misra, S. (2014). Dynamic data aggregator unit selection in smart grid: An evolutionary game theoretic approach. 2014 Annual IEEE India Conference (INDICON). doi: 10.1109/indicon.2014.7030614 [DOI:10.1109/INDICON.2014.7030614]
25. [25] Shi, Y., Qiu, X., & Guo, S. (2015). Genetic algorithm-based redundancy optimization method for smart grid communication network. China Communications, 12(8), 73-84. doi: 10.1109/cc.2015.7224708 [DOI:10.1109/CC.2015.7224708]
26. [26] Das, U., & Namboodiri, V. (2019). A Quality-Aware Multi-Level Data Aggregation Approach to Manage Smart Grid AMI Traffic. IEEE Transactions on Parallel and Distributed Systems, 30(2), 245-256. doi: 10.1109/tpds.2018.2865937 [DOI:10.1109/TPDS.2018.2865937]
27. [27] Ullah, R., Faheem, Y., & Kim, B.-S. (2017). Energy and Congestion-Aware Routing Metric for Smart Grid AMI Networks in Smart City. IEEE Access, 5, 13799-13810. doi: 10.1109/access.2017.2728623 [DOI:10.1109/ACCESS.2017.2728623]
28. [28] Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., & Alexander, R. (2012). RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. doi: 10.17487/rfc6550 [DOI:10.17487/rfc6550]
29. [29] Saputro, N., & Akkaya, K. (2017). Investigation of Smart Meter Data Reporting Strategies for Optimized Performance in Smart Grid AMI Networks. IEEE Internet of Things Journal, 4(4), 894-904. doi: 10.1109/jiot.2017.2701205 [DOI:10.1109/JIOT.2017.2701205]
30. [30] Ribeiro, I., Albuquerque, C., de A. Rocha, A., & Passos, D. (2019). THOR: A framework to build an advanced metering infrastructure resilient to DAP failures in smart grids. Future Generation Computer Systems, 99, 11-26. doi: 10.1016/j.future.2019.03.021 [DOI:10.1016/j.future.2019.03.021]
31. [31] GLPK (GNU Linear Programming Kit). (n.d.). Retrieved from https://www.gnu.org/software/glpk/
32. [32] Team, M. (2019). Mininet: An Instant Virtual Network on your Laptop (or other PC) - Mininet. Retrieved from http://mininet.org
33. [33] Ryu SDN Framework. (2019). Retrieved from https://osrg.github.io/ryu/



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yaghmaee M H, Rezaee M. A New Framework for Increasing the Sustainability of Infrastructure Measurement of Smart Grid. ieijqp 2020; 8 (3) :10-21
URL: http://ieijqp.ir/article-1-633-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 3 (1-2020) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.11 seconds with 40 queries by YEKTAWEB 4645