[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 1 (3-2020) ::
ieijqp 2020, 9(1): 1-15 Back to browse issues page
Designing a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed
Khatereh Farjami1 , Ardashir Mohammadzadeh * 2, Ali Ahmadian2 , Sajad Shoja2
1- University of Semnan
2- University of Bonab
Abstract:   (3237 Views)
One of the main tasks of the control systems in the wind turbines is to maintain the power of the wind when its wind speed proceed its nominal value. Because the failure to maintain the power in its nominal value in the region of the turbine curve damages the turbine and increases the mechanical stress. This object is obtained by controlling the pitch angle in the third region of the turbine curve. In this study, a fuzzy fractional-order PID controller is designed to regulate pitch angle in the wind turbines and its efficiency is compared with conventional PID and fractional-order PID controllers. The proposed control method is applied to a 100kW wind turbine under a variable wind speed. The simulations results show that the value of the root mean squre error for the proposed control method is less than the conventional PID and fractional order PID controllers, and also the proposed control scheme results in smoother and better control signals, output power and generator speed in third region of performance.

 
Keywords: Wind Turbine, fuzzy systems, PID controller, Fractional order PID controller.
Full-Text [PDF 1615 kb]   (1031 Downloads)    
Type of Study: Research |
Received: 2019/05/23 | Accepted: 2020/02/22 | Published: 2020/04/15
References
1. [1]: Shamsnia, Ali, Hossein Hosseini, and Saeed Danyali. "Modeling and simulation of PV cell-wind turbine hybrid inverter with MPPT algorithms." Iranian Electric Industry Journal of Quality and Productivity 1, no. 2 (2013): 8-18.
2. [2]: Safaeei, Arman, Seyed Hossein Hosseinian, and Hossein Askarian Abyaneh. "Fault Ride through Capability Improvement of the DFIG-Based Wind Turbine in Microgrid." Iranian Electric Industry Journal of Quality and Productivity 6, no. 2 (2018): 34-45.
3. [3]: Abir, Afdhal, Dhaoui Mehdi, and Sbita Lassaad. "Pitch angle control of the variable speed wind turbine." In 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 582-587. IEEE, 2016. [DOI:10.1109/STA.2016.7952021]
4. [4]: Jesus, Isabel S., and Ramiro S. Barbosa. "Fuzzy fractional PID controller tuned through a PSO algorithm." In CONTROLO'2014-Proceedings of the 11th Portuguese Conference on Automatic Control, pp. 207-216. Springer, Cham, 2015. [DOI:10.1007/978-3-319-10380-8_20]
5. [5]: Rahmani, Mohsen, Ali Barootiha, and Mahmoud Samadi. "Robust Fuzzy Fractional-Order PID Controller Design using Multi-Objective Optimization." J. Basic Appl. Sci. Res. 3, no. 2 (2013): 232-236.
6. [6]: Tian, Xiaomin, Yourui Huang, and Canming Zhang. "The tuning principle of adaptive fuzzy fractional-order PID controller parameters." Procedia Engineering 7 (2010): 251-255. [DOI:10.1016/j.proeng.2010.11.040]
7. [7]: M. W. Foley, R. H. Julien, and B. R. Copeland, "A Comparison of PID Controller Tuning Methods," The Canadian Journal of Chemical Engineering, vol. 83, no. 4, pp. 712-722, 2008. [DOI:10.1002/cjce.5450830412]
8. [8]: Astrom, K. J., and T. Hagglund. "PID controllers: Theory, Design, and Tuning 2nd Ed.. Instr." Society of America (1995).
9. [9]: Tapia, Gerardo, Arantxa Tapia, and J. Xabier Ostolaza. "Two alternative modeling approaches for the evaluation of wind farm active and reactive power performances." IEEE transactions on energy conversion 21, no. 4 (2006): 909-920. [DOI:10.1109/TEC.2005.859975]
10. [10]: Hand, M., and Mark Balas. "Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines." In 1998 ASME Wind Energy Symposium, p. 31. 1998. [DOI:10.2514/6.1998-31]
11. [11]: Yin, Xiuxing, Wencan Zhang, Zhansi Jiang, and Li Pan. "Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine." Mechanical Systems and Signal Processing 133 (2019): 105704. [DOI:10.1016/j.ymssp.2018.09.026]
12. [12]: Colombo, L., M. L. Corradini, G. Ippoliti, and G. Orlando. "Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach." ISA transactions (2019). [DOI:10.1016/j.isatra.2019.07.002]
13. [13]: Lan, Jianglin, Ron J. Patton, and Xiaoyuan Zhu. "Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation." Renewable Energy 116 (2018): 219-231. [DOI:10.1016/j.renene.2016.12.005]
14. [14]: Vieira, João PA, Marcus VA Nunes, Ubiratan H. Bezerra, and Walter Barra Jr. "Novas estratégias de controle fuzzy aplicadas ao conversor do DFIG para melhoria da estabilidade transitória em sistemas eólicos." IEEE Latin America Trans 5, no. 3 (2007): 143-150
15. [15]: Civelek, Zafer. "Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm." Engineering Science and Technology, an International Journal (2019). [DOI:10.1016/j.jestch.2019.04.010]
16. [16]: Asgharnia, Amirhossein, Reza Shahnazi, and Ali Jamali. "Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms." ISA transactions 79 (2018): 27-44. [DOI:10.1016/j.isatra.2018.04.016]
17. [17]: Hur, Sung-ho, and Bill Leithead. "Model predictive control of a variable-speed pitch-regulated wind turbine." In 2016 UKACC 11th International Conference on Control (CONTROL), pp. 1-6. IEEE, 2016. [DOI:10.1109/CONTROL.2016.7737542]
18. [18]: Lasheen, Ahmed, and Abdel Latif Elshafei. "Wind-turbine collective-pitch control via a fuzzy predictive algorithm." Renewable energy 87 (2016): 298-306. [DOI:10.1016/j.renene.2015.10.030]
19. [19]: Pahasa, Jonglak, and Issarachai Ngamroo. "Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid." IEEE Systems Journal 10, no. 1 (2016): 97-105. [DOI:10.1109/JSYST.2014.2313810]
20. [20]: Viveiros, C., Rui Melício, José M. Igreja, and Víctor Manuel Fernandes Mendes. "Fractional order control on a wind turbine benchmark." In 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), pp. 76-81. IEEE, 2014. [DOI:10.1109/ICSTCC.2014.6982394]
21. [21]: Viveiros, Carla, Rui Melício, José M. Igreja, and Victor MF Mendes. "Fuzzy, integer and fractional-order control: Application on a wind turbine benchmark model." In 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 252-257. IEEE, 2014. [DOI:10.1109/MMAR.2014.6957360]
22. [22]: Yassin, H. M., H. H. Hanafy, and Mohab M. Hallouda. "Design and implementation of PI controllers of direct drive PMSG wind turbine system tuned by Linearized biogeography-based optimization technique." In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 4072-4077. IEEE, 2016.. [DOI:10.1109/IECON.2016.7793375]
23. [23]: Vidal, Yolanda, Leonardo Acho, Ningsu Luo, and Christian Tutiven. "Hardware in the loop wind turbine simulator for control system testing." In Wind Turbine Control and Monitoring, pp. 449-466. Springer, Cham, 2014. [DOI:10.1007/978-3-319-08413-8_15]
24. [24]: Onar, O. C., M. Uzunoglu, and M. S. Alam. "Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system." Journal of power sources 161, no. 1 (2006): 707-722. [DOI:10.1016/j.jpowsour.2006.03.055]
25. [25]: Song, Juncai, Fei Dong, Jiwen Zhao, Siliang Lu, Shaokun Dou, and Hui Wang. "Optimal design of permanent magnet linear synchronous motors based on Taguchi method." IET Electric Power Applications 11, no. 1 (2017): 41-48. [DOI:10.1049/iet-epa.2016.0164]
26. [26]: El-Refaie, Ayman M. "Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges." IEEE Transactions on industrial Electronics 57, no. 1 (2010): 107-121. [DOI:10.1109/TIE.2009.2030211]
27. [27]: Burton, Tony, David Sharpe, and Nick Jenkins. Handbook of wind energy. John Wiley & Sons, 2001.
28. [28]: Slootweg, Han, and E. De Vries. "Inside wind turbines-Fixed vs. variable speed." Renewable Energy World 6, no. 1 (2003): 30-41.
29. [29]: Mann, George KI, Bao-Gang Hu, and Raymond G. Gosine. "Analysis of direct action fuzzy PID controller structures." IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 29, no. 3 (1999): 371-388. [DOI:10.1109/3477.764871]
30. [30]: Valério, Duarte, and José Sá Da Costa. "Tuning of fractional PID controllers with Ziegler-Nichols-type rules." Signal processing 86, no. 10 (2006): 2771-2784 [DOI:10.1016/j.sigpro.2006.02.020]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farjami K, Mohammadzadeh A, Ahmadian A, Shoja S. Designing a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed. ieijqp 2020; 9 (1) :1-15
URL: http://ieijqp.ir/article-1-630-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (3-2020) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 40 queries by YEKTAWEB 4645