[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 3 (10-2025) ::
ieijqp 2025, 14(3): 0-0 Back to browse issues page
Using Supercapacitors in AC Microgrids to Improve Frequency Stability and Extend Battery Life Cycle
Mohammadhossein Rouhinezhad1 , Seyyed Yousef Mousazadeh Mousavi *1 , Mohammad Rezanejad1
1- University of Mazandaran
Abstract:   (9 Views)

In modern power systems, the utilization of renewable energy sources has increased significantly. Due to the stochastic nature of these sources and to maintain stability in islanded microgrids, the use of energy storage systems has become essential. Batteries are the most commonly used storage devices across various scales, but they face two major challenges: slow dynamic response and limited lifetime. To address these issues and improve frequency regulation in microgrids while extending battery life, this paper proposes a hybrid energy storage system comprising a battery and a supercapacitor. Unlike batteries, supercapacitors have very fast dynamics and can quickly respond to frequency deviations. Moreover, they can inject substantial power into the grid when subjected to pulse loads, preventing system instability. The performance of the proposed hybrid energy storage system is evaluated on an islanded microgrid and compared with a system using only batteries. Simulation results indicate that the presence of the supercapacitor improves both peak and RMS frequency deviations by approximately 90%.
 

Keywords: Islanded Microgrid, Frequency Control, Frequency Stability, Renewable Energy Sources, Hybrid Energy Storage System, Supercapacitor, PID Controller
     
Type of Study: Research |
Received: 2025/01/12 | Accepted: 2025/09/22 | Published: 2025/10/8
References
1. Abbey, C., & Joos, G. (2007). Supercapacitor energy storage for wind energy applications. IEEE transactions on Industry applications, 43(3), 769-776. [DOI:10.1109/TIA.2007.895768]
2. Ali, H., Magdy, G., Li, B., Shabib, G., Elbaset, A. A., Xu, D., & Mitani, Y. (2019). A new frequency control strategy in an islanded microgrid using virtual inertia control-based coefficient diagram method. IEEE access, 7, 16979-16990. [DOI:10.1109/ACCESS.2019.2894840]
3. Bennett, S. (1993). Development of the PID controller. IEEE Control Systems Magazine, 13(6), 58-62. [DOI:10.1109/37.248006]
4. Borase, R. P., Maghade, D., Sondkar, S., & Pawar, S. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9(2), 818-827. [DOI:10.1007/s40435-020-00665-4]
5. Bošković, M. Č., Šekara, T. B., & Rapaić, M. R. (2021). An Analytical Design Method of PI/PID Load Frequency Controllers for Single-Area Power System with Communication Network Time Delay. 2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH), [DOI:10.1109/INFOTEH51037.2021.9400703]
6. Dissanayake, K., & Kularatna-Abeywardana, D. (2024). A review of supercapacitors: Materials, technology, challenges, and renewable energy applications. Journal of Energy Storage, 96, 112563. [DOI:10.1016/j.est.2024.112563]
7. Farrokhabadi, M., König, S., Cañizares, C. A., Bhattacharya, K., & Leibfried, T. (2017). Battery energy storage system models for microgrid stability analysis and dynamic simulation. IEEE Transactions on Power Systems, 33(2), 2301-2312. [DOI:10.1109/TPWRS.2017.2740163]
8. Fini, M. H., & Golshan, M. E. H. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. [DOI:10.1016/j.epsr.2017.08.007]
9. Gholamrezaie, V., Dozein, M. G., Monsef, H., & Wu, B. (2017). An optimal frequency control method through a dynamic load frequency control (LFC) model incorporating wind farm. IEEE Systems Journal, 12(1), 392-401. [DOI:10.1109/JSYST.2016.2563979]
10. Gopi, P., Alluraiah, N. C., Kumar, P. H., Bajaj, M., Blazek, V., & Prokop, L. (2024). Improving load frequency controller tuning with rat swarm optimization and porpoising feature detection for enhanced power system stability. Scientific Reports, 14(1), 15209. [DOI:10.1038/s41598-024-66007-y]
11. Hote, Y. V., & Jain, S. (2018). PID controller design for load frequency control: Past, Present and future challenges. IFAC-PapersOnLine, 51(4), 604-609. [DOI:10.1016/j.ifacol.2018.06.162]
12. Jan, M. U., Xin, A., Rehman, H. U., Abdelbaky, M. A., Iqbal, S., & Aurangzeb, M. (2021). Frequency regulation of an isolated microgrid with electric vehicles and energy storage system integration using adaptive and model predictive controllers. IEEE access, 9, 14958-14970. [DOI:10.1109/ACCESS.2021.3052797]
13. Javadi, M., Gong, Y., & Chung, C. (2021). Frequency stability constrained microgrid scheduling considering seamless islanding. IEEE Transactions on Power Systems, 37(1), 306-316. [DOI:10.1109/TPWRS.2021.3086844]
14. Kazemi, M. V., Sadati, S. J., & Gholamian, S. A. (2021). Adaptive frequency control of microgrid based on fractional order control and a data-driven control with stability analysis. IEEE Transactions on Smart Grid, 13(1), 381-392. [DOI:10.1109/TSG.2021.3109627]
15. Khamies, M., Magdy, G., Selim, A., & Kamel, S. (2022). An improved Rao algorithm for frequency stability enhancement of nonlinear power system interconnected by AC/DC links with high renewables penetration. Neural computing and applications, 34(4), 2883-2911. [DOI:10.1007/s00521-021-06545-y]
16. Khokhar, B., & Parmar, K. S. (2022). A novel adaptive intelligent MPC scheme for frequency stabilization of a microgrid considering SoC control of EVs. Applied Energy, 309, 118423. [DOI:10.1016/j.apenergy.2021.118423]
17. Kularatna, N., & Jayananda, D. (2020). Supercapacitor-based long time-constant circuits: A unique design opportunity for new power electronic circuit topologies. IEEE Industrial Electronics Magazine, 14(2), 40-56. [DOI:10.1109/MIE.2019.2959199]
18. Mensah-Darkwa, K., Zequine, C., Kahol, P. K., & Gupta, R. K. (2019). Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustainability, 11(2), 414. [DOI:10.3390/su11020414]
19. Oshnoei, S., Aghamohammadi, M. R., Oshnoei, S., Sahoo, S., Fathollahi, A., & Khooban, M. H. (2023). A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control. Applied Energy, 343, 121233. [DOI:10.1016/j.apenergy.2023.121233]
20. Parhizi, S., Lotfi, H., Khodaei, A., & Bahramirad, S. (2015). State of the art in research on microgrids: A review. IEEE access, 3, 890-925. [DOI:10.1109/ACCESS.2015.2443119]
21. Sahay, K., & Dwivedi, B. (2009). Supercapacitors energy storage system for power quality improvement: An overview. J. Energy Sources, 10(10), 1-8.
22. Sati, S. E., Al-Durra, A., Zeineldin, H., EL-Fouly, T. H., & El-Saadany, E. F. (2024). A novel virtual inertia-based damping stabilizer for frequency control enhancement for islanded microgrid. International Journal of Electrical Power & Energy Systems, 155, 109580. [DOI:10.1016/j.ijepes.2023.109580]
23. Xiong, L., Huang, S., Zhou, Y., Li, P., Wang, Z., Khan, M. W., Wang, J., Niu, T., & Ma, M. (2022). Voltage and frequency regulation with WT-PV-BESS in remote weak grids via fixed-time containment control. IEEE Transactions on Power Systems, 38(3), 2719-2735. Yang, F., Huang, D., Li, D., Lin, S., Muyeen, S., & Zhai, H. (2022). Data-driven load frequency control based on multi-agent reinforcement learning with attention mechanism. IEEE Transactions on Power Systems, 38(6), 5560-5569. https://doi.org/10.1109/TPWRS.2022.3223255 [DOI:10.1109/TPWRS.2022.3190847]
24. Zaid, S. A., Bakeer, A., Magdy, G., Albalawi, H., Kassem, A. M., El-Shimy, M. E., AbdelMeguid, H., & Manqarah, B. (2023). A new intelligent fractional-order load frequency control for interconnected modern power systems with virtual inertia control. Fractal and Fractional, 7(1), 62. [DOI:10.3390/fractalfract7010062]
25. Zhao, B., Zhang, X., Chen, J., Wang, C., & Guo, L. (2013). Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE transactions on sustainable energy, 4(4), 934-943. [DOI:10.1109/TSTE.2013.2248400]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rouhinezhad M, Mousazadeh Mousavi S Y, Rezanejad M. Using Supercapacitors in AC Microgrids to Improve Frequency Stability and Extend Battery Life Cycle. ieijqp 2025; 14 (3)
URL: http://ieijqp.ir/article-1-1023-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 3 (10-2025) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4722