1. [1] R. Shankar, S. Pradhan, K. Chatterjee, and R. Mandal, "A comprehensive state of the art literature survey on LFC mechanism for power system," Renewable and Sustainable Energy Reviews, vol. 76, pp. 1185-1207, 2017. [ DOI:10.1016/j.rser.2017.02.064] 2. [2] V. P. Singh, N. Kishor, and P. J. I. T. o. I. I. Samuel, "Load frequency control with communication topology changes in smart grid," vol. 12, no. 5, pp. 1943-1952, 2016. [ DOI:10.1109/TII.2016.2574242] 3. [3] P. S. Kundur, "Power system stability," in Power System Stability and Control: CRC Press, 2017, pp. 8-1-8-11. 4. [4] P. Kumar and D. P. Kothari, "Recent philosophies of automatic generation control strategies in power systems," IEEE transactions on power systems, vol. 20, no. 1, pp. 346-357, 2005. [ DOI:10.1109/TPWRS.2004.840438] 5. [5] H. Bevrani, Robust power system frequency control. Springer, 2009. [ DOI:10.1007/978-0-387-84878-5] 6. [6] X. Lu, X. Yu, J. Lai, J. M. Guerrero, and H. J. I. T. o. I. I. Zhou, "Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links," vol. 13, no. 2, pp. 448-460, 2016. [ DOI:10.1109/TII.2016.2603844] 7. [7] S. K. Pandey, S. R. Mohanty, and N. Kishor, "A literature survey on load-frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, vol. 25, pp. 318-334, 2013. [ DOI:10.1016/j.rser.2013.04.029] 8. [8] R. K. Sahu, S. Panda, and N. K. Yegireddy, "A novel hybrid DEPS optimized fuzzy PI/PID controller for load frequency control of multi-area interconnected power systems," Journal of Process Control, vol. 24, no. 10, pp. 1596-1608, 2014. [ DOI:10.1016/j.jprocont.2014.08.006] 9. [9] M. Farahani, S. Ganjefar, and M. Alizadeh, "PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control," IET Control Theory & Applications, vol. 6, no. 13, pp. 1984-1992, 2012. [ DOI:10.1049/iet-cta.2011.0405] 10. [10] R. K. Sahu, S. Panda, U. K. Rout, and D. K. Sahoo, "Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller," International Journal of Electrical Power & Energy Systems, vol. 77, pp. 287-301, 2016. [ DOI:10.1016/j.ijepes.2015.11.082] 11. [11] F. Liu, Y. Li, Y. Cao, J. She, and M. J. I. T. o. P. S. Wu, "A two-layer active disturbance rejection controller design for load frequency control of interconnected power system," vol. 31, no. 4, pp. 3320-3321, 2015. [ DOI:10.1109/TPWRS.2015.2480005] 12. [12] W. Tan, "Unified tuning of PID load frequency controller for power systems via IMC," IEEE Transactions on power systems, vol. 25, no. 1, pp. 341-350, 2009. [ DOI:10.1109/TPWRS.2009.2036463] 13. [13] G. Benysek, J. Bojarski, R. Smolenski, M. Jarnut, and S. J. I. T. o. S. G. Werminski, "Application of stochastic decentralized active demand response (DADR) system for load frequency control," vol. 9, no. 2, pp. 1055-1062, 2016. [ DOI:10.1109/TSG.2016.2574891] 14. [14] W. Tan, "Decentralized load frequency controller analysis and tuning for multi-area power systems," Energy conversion and management, vol. 52, no. 5, pp. 2015-2023, 2011. [ DOI:10.1016/j.enconman.2010.12.011] 15. [15] N. Kumari and A. Jha, "Frequency control of multi-area power system network using PSO based LQR," in 2014 6th IEEE Power India International Conference (PIICON), 2014, pp. 1-6: IEEE. [ DOI:10.1109/34084POWERI.2014.7117761] 16. [16] A. Bensenouci and A. A. Ghany, "Mixed H∞/H 2 with pole-placement design of robust LMI-based output feedback controllers for multi-area load frequency control," in EUROCON 2007-The International Conference on" Computer as a Tool", 2007, pp. 1561-1566: IEEE. [ DOI:10.1109/EURCON.2007.4400287] 17. [17] H. A. Yousef, A.-K. Khalfan, M. H. Albadi, and N. Hosseinzadeh, "Load frequency control of a multi-area power system: An adaptive fuzzy logic approach," IEEE transactions on power systems, vol. 29, no. 4, pp. 1822-1830, 2014. [ DOI:10.1109/TPWRS.2013.2297432] 18. [18] M. Ma, C. Zhang, X. Liu, and H. J. I. t. o. I. E. Chen, "Distributed model predictive load frequency control of the multi-area power system after deregulation," vol. 64, no. 6, pp. 5129-5139, 2016. [ DOI:10.1109/TIE.2016.2613923] 19. [19] P. Ojaghi and M. Rahmani, "LMI-based robust predictive load frequency control for power systems with communication delays," IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 4091-4100, 2017. [ DOI:10.1109/TPWRS.2017.2654453] 20. [20] C. J. Ramlal, A. Singh, S. Rocke, and M. J. I. T. o. P. S. Sutherland, "Decentralized Fuzzy $ H_infty $-Iterative Learning LFC With Time-Varying Communication Delays and Parametric Uncertainties," vol. 34, no. 6, pp. 4718-4727, 2019. [ DOI:10.1109/TPWRS.2019.2917613] 21. [21] H. Bevrani, P. R. Daneshmand, P. Babahajyani, Y. Mitani, and T. J. I. T. o. S. E. Hiyama, "Intelligent LFC concerning high penetration of wind power: synthesis and real-time application," vol. 5, no. 2, pp. 655-662, 2013. [ DOI:10.1109/TSTE.2013.2290126] 22. [22] S. Saxena and Y. V. J. I. t. o. p. s. Hote, "Load frequency control in power systems via internal model control scheme and model-order reduction," vol. 28, no. 3, pp. 2749-2757, 2013. [ DOI:10.1109/TPWRS.2013.2245349] 23. [23] L. Cai, Z. He, and H. J. I. T. o. P. S. Hu, "A new load frequency control method of multi-area power system via the viewpoints of port-Hamiltonian system and cascade system," vol. 32, no. 3, pp. 1689-1700, 2016. [ DOI:10.1109/TPWRS.2016.2605007] 24. [24] Z. Al-Hamouz, H. Al-Duwaish, and N. Al-Musabi, "Optimal design of a sliding mode AGC controller: Application to a nonlinear interconnected model," Electric power systems research, vol. 81, no. 7, pp. 1403-1409, 2011. [ DOI:10.1016/j.epsr.2011.02.004] 25. [25] K. Liao, Z. He, Y. Xu, G. Chen, Z. Y. Dong, and K. P. J. I. T. o. S. E. Wong, "A sliding mode based damping control of DFIG for interarea power oscillations," vol. 8, no. 1, pp. 258-267, 2016. [ DOI:10.1109/TSTE.2016.2597306] 26. [26] K. Liao and Y. J. I. T. o. I. I. Xu, "A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer," vol. 14, no. 7, pp. 3076-3086, 2017. [ DOI:10.1109/TII.2017.2771487] 27. [27] S. Prasad, S. Purwar, and N. Kishor, "H-infinity based non-linear sliding mode controller for frequency regulation in interconnected power systems with constant and time-varying delays," IET Generation, Transmission & Distribution, vol. 10, no. 11, pp. 2771-2784, 2016. [ DOI:10.1049/iet-gtd.2015.1475] 28. [28] D. Qian, D. Zhao, J. Yi, and X. Liu, "Neural sliding-mode load frequency controller design of power systems," Neural Computing and Applications, vol. 22, no. 2, pp. 279-286, 2013. [ DOI:10.1007/s00521-011-0709-0] 29. [29] Z. Du, Y. Zhang, Y. Ni, L. Shi, L. Yao, and M. Bazargan, "COI-based backstepping sliding-mode emergency frequency control for interconnected AC/DC power systems," in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-6: IEEE. [ DOI:10.1109/PES.2009.5275801] 30. [30] Z. Wu, X. Wang, and X. Zhao, "Backstepping terminal sliding mode control of DFIG for maximal wind energy captured," Int. J. Innov. Comput., Inf. Control, vol. 12, no. 5, pp. 1565-1579, 2016. 31. [31] N. M. Dehkordi, N. Sadati, and M. Hamzeh, "A backstepping high-order sliding mode voltage control strategy for an islanded microgrid with harmonic/interharmonic loads," Control Engineering Practice, vol. 58, pp. 150-160, 2017. [ DOI:10.1016/j.conengprac.2016.10.008] 32. [32] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and adaptive control design. John Wiley & Sons, Inc., 1995. 33. [33] Y. Zhang, X. Liu, and B. Qu, "Distributed model predictive load frequency control of multi-area power system with DFIGs," IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 125-135, 2017. [ DOI:10.1109/JAS.2017.7510346] 34. [34] M. Yang, Y. Fu, C. Wang, and P. Wang, "Decentralized sliding mode load frequency control for multi-area power system," IEEE Transactions on Power System, vol. 28, no. 4, pp. 4301-4309, 2013. [ DOI:10.1109/TPWRS.2013.2277131]
|