[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 1 (4-2025) ::
ieijqp 2025, 14(1): 55-66 Back to browse issues page
Decentralized load frequency control using backstepping method and fuzzy with supervisory control approach
Mahmoud Zadehbagheri *1
Abstract:   (77 Views)

This paper proposes a new load frequency control (LFC) method for multi-area power systems using the backstepping algorithm and fuzzy control based on a decentralized control strategy. At first, a backstepping controller is designed for the single-area system, and the stability of the method is proved by the Lyapunov method. In addition, to reject large disturbances and make the system more robust against parameter variations an optimal supplementary fuzzy controller is used for decentralized LFC. For optimal performance of the two controllers, the particle swarm optimization algorithm is used to obtain the control parameters of the two controllers. Coordination and switching between the two controllers is done by a supervisory control strategy. Finally, several simulations are performed on one area system, three area system, and four area system. The merits of the proposed scheme include faster response speed, stronger robustness against disturbances, and system parameter variations over the state-of-the-arts.

Keywords: load frequency control, fuzzy control, backward step control, supervisory control, Lyapunov method
     
Type of Study: Applicable |
Received: 2024/05/24 | Accepted: 2024/11/24 | Published: 2025/04/30
References
1. [1] R. Shankar, S. Pradhan, K. Chatterjee, and R. Mandal, "A comprehensive state of the art literature survey on LFC mechanism for power system," Renewable and Sustainable Energy Reviews, vol. 76, pp. 1185-1207, 2017. [DOI:10.1016/j.rser.2017.02.064]
2. [2] V. P. Singh, N. Kishor, and P. J. I. T. o. I. I. Samuel, "Load frequency control with communication topology changes in smart grid," vol. 12, no. 5, pp. 1943-1952, 2016. [DOI:10.1109/TII.2016.2574242]
3. [3] P. S. Kundur, "Power system stability," in Power System Stability and Control: CRC Press, 2017, pp. 8-1-8-11.
4. [4] P. Kumar and D. P. Kothari, "Recent philosophies of automatic generation control strategies in power systems," IEEE transactions on power systems, vol. 20, no. 1, pp. 346-357, 2005. [DOI:10.1109/TPWRS.2004.840438]
5. [5] H. Bevrani, Robust power system frequency control. Springer, 2009. [DOI:10.1007/978-0-387-84878-5]
6. [6] X. Lu, X. Yu, J. Lai, J. M. Guerrero, and H. J. I. T. o. I. I. Zhou, "Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links," vol. 13, no. 2, pp. 448-460, 2016. [DOI:10.1109/TII.2016.2603844]
7. [7] S. K. Pandey, S. R. Mohanty, and N. Kishor, "A literature survey on load-frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, vol. 25, pp. 318-334, 2013. [DOI:10.1016/j.rser.2013.04.029]
8. [8] R. K. Sahu, S. Panda, and N. K. Yegireddy, "A novel hybrid DEPS optimized fuzzy PI/PID controller for load frequency control of multi-area interconnected power systems," Journal of Process Control, vol. 24, no. 10, pp. 1596-1608, 2014. [DOI:10.1016/j.jprocont.2014.08.006]
9. [9] M. Farahani, S. Ganjefar, and M. Alizadeh, "PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control," IET Control Theory & Applications, vol. 6, no. 13, pp. 1984-1992, 2012. [DOI:10.1049/iet-cta.2011.0405]
10. [10] R. K. Sahu, S. Panda, U. K. Rout, and D. K. Sahoo, "Teaching learning based optimization algorithm for automatic generation control of power system using 2-DOF PID controller," International Journal of Electrical Power & Energy Systems, vol. 77, pp. 287-301, 2016. [DOI:10.1016/j.ijepes.2015.11.082]
11. [11] F. Liu, Y. Li, Y. Cao, J. She, and M. J. I. T. o. P. S. Wu, "A two-layer active disturbance rejection controller design for load frequency control of interconnected power system," vol. 31, no. 4, pp. 3320-3321, 2015. [DOI:10.1109/TPWRS.2015.2480005]
12. [12] W. Tan, "Unified tuning of PID load frequency controller for power systems via IMC," IEEE Transactions on power systems, vol. 25, no. 1, pp. 341-350, 2009. [DOI:10.1109/TPWRS.2009.2036463]
13. [13] G. Benysek, J. Bojarski, R. Smolenski, M. Jarnut, and S. J. I. T. o. S. G. Werminski, "Application of stochastic decentralized active demand response (DADR) system for load frequency control," vol. 9, no. 2, pp. 1055-1062, 2016. [DOI:10.1109/TSG.2016.2574891]
14. [14] W. Tan, "Decentralized load frequency controller analysis and tuning for multi-area power systems," Energy conversion and management, vol. 52, no. 5, pp. 2015-2023, 2011. [DOI:10.1016/j.enconman.2010.12.011]
15. [15] N. Kumari and A. Jha, "Frequency control of multi-area power system network using PSO based LQR," in 2014 6th IEEE Power India International Conference (PIICON), 2014, pp. 1-6: IEEE. [DOI:10.1109/34084POWERI.2014.7117761]
16. [16] A. Bensenouci and A. A. Ghany, "Mixed H∞/H 2 with pole-placement design of robust LMI-based output feedback controllers for multi-area load frequency control," in EUROCON 2007-The International Conference on" Computer as a Tool", 2007, pp. 1561-1566: IEEE. [DOI:10.1109/EURCON.2007.4400287]
17. [17] H. A. Yousef, A.-K. Khalfan, M. H. Albadi, and N. Hosseinzadeh, "Load frequency control of a multi-area power system: An adaptive fuzzy logic approach," IEEE transactions on power systems, vol. 29, no. 4, pp. 1822-1830, 2014. [DOI:10.1109/TPWRS.2013.2297432]
18. [18] M. Ma, C. Zhang, X. Liu, and H. J. I. t. o. I. E. Chen, "Distributed model predictive load frequency control of the multi-area power system after deregulation," vol. 64, no. 6, pp. 5129-5139, 2016. [DOI:10.1109/TIE.2016.2613923]
19. [19] P. Ojaghi and M. Rahmani, "LMI-based robust predictive load frequency control for power systems with communication delays," IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 4091-4100, 2017. [DOI:10.1109/TPWRS.2017.2654453]
20. [20] C. J. Ramlal, A. Singh, S. Rocke, and M. J. I. T. o. P. S. Sutherland, "Decentralized Fuzzy $ H_infty $-Iterative Learning LFC With Time-Varying Communication Delays and Parametric Uncertainties," vol. 34, no. 6, pp. 4718-4727, 2019. [DOI:10.1109/TPWRS.2019.2917613]
21. [21] H. Bevrani, P. R. Daneshmand, P. Babahajyani, Y. Mitani, and T. J. I. T. o. S. E. Hiyama, "Intelligent LFC concerning high penetration of wind power: synthesis and real-time application," vol. 5, no. 2, pp. 655-662, 2013. [DOI:10.1109/TSTE.2013.2290126]
22. [22] S. Saxena and Y. V. J. I. t. o. p. s. Hote, "Load frequency control in power systems via internal model control scheme and model-order reduction," vol. 28, no. 3, pp. 2749-2757, 2013. [DOI:10.1109/TPWRS.2013.2245349]
23. [23] L. Cai, Z. He, and H. J. I. T. o. P. S. Hu, "A new load frequency control method of multi-area power system via the viewpoints of port-Hamiltonian system and cascade system," vol. 32, no. 3, pp. 1689-1700, 2016. [DOI:10.1109/TPWRS.2016.2605007]
24. [24] Z. Al-Hamouz, H. Al-Duwaish, and N. Al-Musabi, "Optimal design of a sliding mode AGC controller: Application to a nonlinear interconnected model," Electric power systems research, vol. 81, no. 7, pp. 1403-1409, 2011. [DOI:10.1016/j.epsr.2011.02.004]
25. [25] K. Liao, Z. He, Y. Xu, G. Chen, Z. Y. Dong, and K. P. J. I. T. o. S. E. Wong, "A sliding mode based damping control of DFIG for interarea power oscillations," vol. 8, no. 1, pp. 258-267, 2016. [DOI:10.1109/TSTE.2016.2597306]
26. [26] K. Liao and Y. J. I. T. o. I. I. Xu, "A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer," vol. 14, no. 7, pp. 3076-3086, 2017. [DOI:10.1109/TII.2017.2771487]
27. [27] S. Prasad, S. Purwar, and N. Kishor, "H-infinity based non-linear sliding mode controller for frequency regulation in interconnected power systems with constant and time-varying delays," IET Generation, Transmission & Distribution, vol. 10, no. 11, pp. 2771-2784, 2016. [DOI:10.1049/iet-gtd.2015.1475]
28. [28] D. Qian, D. Zhao, J. Yi, and X. Liu, "Neural sliding-mode load frequency controller design of power systems," Neural Computing and Applications, vol. 22, no. 2, pp. 279-286, 2013. [DOI:10.1007/s00521-011-0709-0]
29. [29] Z. Du, Y. Zhang, Y. Ni, L. Shi, L. Yao, and M. Bazargan, "COI-based backstepping sliding-mode emergency frequency control for interconnected AC/DC power systems," in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1-6: IEEE. [DOI:10.1109/PES.2009.5275801]
30. [30] Z. Wu, X. Wang, and X. Zhao, "Backstepping terminal sliding mode control of DFIG for maximal wind energy captured," Int. J. Innov. Comput., Inf. Control, vol. 12, no. 5, pp. 1565-1579, 2016.
31. [31] N. M. Dehkordi, N. Sadati, and M. Hamzeh, "A backstepping high-order sliding mode voltage control strategy for an islanded microgrid with harmonic/interharmonic loads," Control Engineering Practice, vol. 58, pp. 150-160, 2017. [DOI:10.1016/j.conengprac.2016.10.008]
32. [32] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and adaptive control design. John Wiley & Sons, Inc., 1995.
33. [33] Y. Zhang, X. Liu, and B. Qu, "Distributed model predictive load frequency control of multi-area power system with DFIGs," IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 125-135, 2017. [DOI:10.1109/JAS.2017.7510346]
34. [34] M. Yang, Y. Fu, C. Wang, and P. Wang, "Decentralized sliding mode load frequency control for multi-area power system," IEEE Transactions on Power System, vol. 28, no. 4, pp. 4301-4309, 2013. [DOI:10.1109/TPWRS.2013.2277131]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zadehbagheri M. Decentralized load frequency control using backstepping method and fuzzy with supervisory control approach. ieijqp 2025; 14 (1) :55-66
URL: http://ieijqp.ir/article-1-998-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 1 (4-2025) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4710