[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 11, Issue 2 (4-2022) ::
ieijqp 2022, 11(2): 51-67 Back to browse issues page
Design and implementation of a novel non-isolated DC-DC converter with high voltage gain and low voltage stress
Seyed Mohammad Sadeghzadeh * 1, Hamed Javaheri Fard1
1- Shahed University
Abstract:   (978 Views)
In this paper, a non-isolated high step-up DC-DC converter with an interleaved structure is presented that is suitable for photovoltaic energy conversion systems. In the proposed topology, coupled inductors and the switched capacitor cells have been used to increase the output voltage. Achieving this purpose is in a situation where no extreme duty cycle or high turns ratio will be required. Due to the use of the interleaved structure and equal current division in two phases, the current ripple is reduced. Also, since the voltage stress of the switches is lower than the output voltage, selecting the low-voltage rated switches and small Rds (On) reduces the conduction loss. Other advantages of the proposed converter include providing the soft-switching conditions for the power switches and alleviating the reverse recovery problem. Recycling of the leakage energy due to the presence of the coupled inductors and no need for the clamp circuits is an important feature of the proposed converter. The experimental results, using prototype 350 W, 18 V input, and 400 V output, verify the effective performance of the proposed converter.
Article number: 5
Keywords: DC-DC converter, interleaved structure, switched capacitor, coupled inductor, high voltage gain
Full-Text [PDF 1789 kb]   (173 Downloads)    
Type of Study: Research |
Received: 2021/11/12 | Accepted: 2022/04/9 | Published: 2022/04/30
References
1. Abasian A, Farzanehfard H, Hashemi SA.,(2019). A single-stage single-switch soft-switching (s6) boost-flyback PFC converter, IEEE Trans. Power Electron,34,pp.9806-9813. [DOI:10.1109/TPEL.2019.2895116]
2. Ajami A, Ardi H, Farakhor A.,(2015). A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications, IEEE Trans. Power Electron,30,pp.4255-4263. [DOI:10.1109/TPEL.2014.2360495]
3. Akhlaghi B, Molavi N, Fekri M, Farzanehfard H., (2018). High stepup interleaved ZVT converter with low voltage stress and automatic current sharing, IEEE Trans. Ind Electron,65,pp.291-299. [DOI:10.1109/TIE.2017.2723861]
4. Bhaskar MS, Ramachandaramurthy VK, Padmanaban S, Blaabjerg F, Ionel DM, Mitolo M, Almakhles D., (2020). Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles, IEEE Access ,8,pp.178130-178166. [DOI:10.1109/ACCESS.2020.3027041]
5. Eskandarpour Azizkandi M, Sedaghati F, Shayeghi H, Blaabjerg F., (2020). A high voltage gain DC-DC converter based on three winding coupled inductor and voltage multiplier cell, IEEE Trans. Power Electron,35,pp.4558-4567. [DOI:10.1109/TPEL.2019.2944518]
6. Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B., (2017). Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications, IEEE Trans. Power Electron,32,pp.9143-9178. [DOI:10.1109/TPEL.2017.2652318]
7. Faridpak B, Bayat M, Nasiri M, Samanbakhsh R, Farrokhifar M., (2021). Improved hybrid switched inductor/switched capacitor DC-DC converters, IEEE Trans. Power Electron,36,pp.3053-3062. [DOI:10.1109/TPEL.2020.3014278]
8. G Wu, Ruan X, Ye Z., (2018). High step-up DC-DC converter based on switched capacitor and coupled inductor, IEEE Trans. Ind Electron,65,pp.5572-5579. [DOI:10.1109/TIE.2017.2774773]
9. Haji-Esmaeili MM, Babaei E, Sabahi M., (2018). High step-up quasi-z source DC-DC converter, IEEE Trans Power Electron,33,pp.10563-10571. [DOI:10.1109/TPEL.2018.2810884]
10. Lee S-W, Do H-L., (2017). A single-switch AC-DC LED driver based on a boost-flyback PFC converter with lossless snubber, IEEE Trans. Power Electron,32,pp.1375-1384. [DOI:10.1109/TPEL.2016.2549029]
11. Lee H-S, Choe H-J, Ham S-H, Kang B., (2017). High-efficiency asymmetric forward-flyback converter for wide output power range, IEEE Trans. Power Electron,32,pp.433-440. [DOI:10.1109/TPEL.2016.2537930]
12. Mousavinezhad Fardahar S, Sabahi M., (2020). New expandable switched-capacitor/switched-inductor high-voltage conversion ratio bidirectional DC-DC converter, IEEE Trans. Power Electron,35,pp.2480-2487. [DOI:10.1109/TPEL.2019.2932325]
13. Nouri T, Hosseini SH, Babaei E, Ebrahimi J., (2015). Interleaved high step-up DC-DC converter based on three-winding high-frequency coupled inductor and voltage multiplier cell, IET Power Electron,8,pp.175-189. [DOI:10.1049/iet-pel.2014.0165]
14. Rajae A, Khazan R, Mahmoudian M, Mardanehand M, Gitizadeh M., (2018). A dual inductor high step-up DC/DC converter based on the Cockcroft-Walton multiplier, IEEE Trans. Power Electron,33,pp.9699-9709. [DOI:10.1109/TPEL.2018.2792004]
15. Samadian AS, Hosseini SH, Sabahi M, Maalandish M., (2020). A new coupled inductor nonisolated high step-up quasi z-source DC-DC converter, IEEE Trans. Ind Electron,67,pp.5389-5397. [DOI:10.1109/TIE.2019.2934067]
16. Shaneh M, Niroomand M, Adib E., (2020). Ultrahigh-step-up nonisolated interleaved boost converter, IIEEE J Emerg Sel Top. Power Electron,8,pp.2747-2758. [DOI:10.1109/JESTPE.2018.2884960]
17. Salehi SM, Dehghan SM, Hasanzadeh S., (2019). Interleaved-input series-output ultra-high voltage gain DC-DC converter, IEEE Trans. Power Electron,34,pp.3397-3406. [DOI:10.1109/TPEL.2018.2853577]
18. Sadaf S, Sagar Bhaskar M, Meraj M, Iqbal A, Al-Emadi N., (2021). A novel modified switched inductor boost converter with reduced switch voltage stress, IEEE Trans. Ind Electron,68,pp.1275-1289. [DOI:10.1109/TIE.2020.2970648]
19. Samavatian V, Radan A., (2015). A high efficiency input/output magnetically coupled interleaved buck-boost converter with low internal oscillation for fuel-cell applications: small signal modeling and dynamic analysis, Int J Electr Power Energy Syst,67,pp.261-271. [DOI:10.1016/j.ijepes.2014.11.011]
20. Thounthong P, Mungporn P, Guilbert D, Takorabet N, Pierfederici S, Nahid-Mobarakeh B, Hu Y, Bizon N, Huangfu Y, Kumam P., (2021). Design and control of multiphase interleaved boost converters-based on differential flatness theory for PEM fuel cell multi-stack applications, Int J Electr Power Energy Syst,124,pp.1-13. [DOI:10.1016/j.ijepes.2020.106346]
21. Youn H-S, Baek J-II, Kim J-K., (2019). Interleaved active clamp forward converter with extended operating duty ratio by adopting additional series-connected secondary windings for wide input and high current output applications, IEEE Trans. Power Electron,34,pp.4423-4433. [DOI:10.1109/TPEL.2018.2859259]
22. Zhang X, Sun L, Guan Y, Han S, Cai H, Wang Y, Xu D., (2020). Novel high step-up soft-switching DC-DC converter based on switched capacitor and coupled inductor, IEEE Trans. Power Electron,35,pp.9471-9481. [DOI:10.1109/TPEL.2020.2972583]
23. Zheng Y, Sun L, Smedly K.M., (2019). Interleaved high step-up converter integrating coupled inductor and switched capacitor for distributed generation systems, IEEE Trans. Power Electron,34,pp.7617-7628. [DOI:10.1109/TPEL.2018.2878409]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghzadeh S M, Javaheri Fard H. Design and implementation of a novel non-isolated DC-DC converter with high voltage gain and low voltage stress. ieijqp 2022; 11 (2) :51-67
URL: http://ieijqp.ir/article-1-866-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 2 (4-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4509