[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 4 (11-2020) ::
ieijqp 2020, 9(4): 24-34 Back to browse issues page
A New Method for Reducing Uncertainty of Wind Power Based on Fuzzy RLS-MLFE
Mohsen Davoudi *1
Abstract:   (2980 Views)
Due to incremental use of renewable energies, some challenges have been arised in control of wind power systems. One of the important ones is the uncertainty of wind power that affects directly on the cost of utilization. In this paper some algorithms based on the fuzzy logic and neural networks have been implemented to analyze the uncertainty of the wind power using historical data collected from a sample wind field. The algoriths are BLS, RLS, MLFE and ANN. Simulation results show that all of the methods results in acceptable outputs but the accuracy of the cobined RLS-MLFE is much better than the others.
Keywords: Fuzzy Analysis, Wind Power Uncertainty, MLFE Algorithm, Artificial Neural Networks
Full-Text [PDF 1135 kb]   (992 Downloads)    
Type of Study: Research |
Received: 2019/08/15 | Accepted: 2020/08/11 | Published: 2020/12/2
References
1. [1] M. Bilgili, A. Ozbek, B. Sahin, and A. Kahraman, "An overview of renewable electric power capacity and progress in new technologies in the world," Renew. Sustain. Energy Rev., vol. 49, pp. 323-334, Sep. 2015. [DOI:10.1016/j.rser.2015.04.148]
2. [2] M. Lange, "Analysis of the uncertainty of wind power predictions," Ph.D. dissertation, Fakultät Mathematik un Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany, 2003.
3. [3] P. Pinson and G. Kariniotakis, "Conditional prediction intervals of wind power generation," IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1845-1856, Nov. 2010. [DOI:10.1109/TPWRS.2010.2045774]
4. [4] P. Pinson, "Very-short-term probabilistic forecasting of wind power with generalized logitnormal distributions," J. Roy. Stat. Soc. C, App., vol. 61, no. 4, pp. 555-576, Aug. 2012. [DOI:10.1111/j.1467-9876.2011.01026.x]
5. [5] A. Botterud, Z. Zhou, J. Wang, R. J. Bessa, H. Keko, J. Sumaili, and V. Miranda, "Wind Power Trading Under Uncertainty in LMP Markets," IEEE Trans. Power Syst., vol. 27, no. 2, pp. 894-903, May 2012. [DOI:10.1109/TPWRS.2011.2170442]
6. [6] J. M. Morales, A. Conejo, H. Madsen, P. Pinson, and M. Zugno, Integrating Renewables in Electricity Markets: Operational Problems, Int. Series in Operations Research and Management Science. New York, NY, USA: Springer, 2014. [DOI:10.1007/978-1-4614-9411-9]
7. [7] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, "Optimal Prediction Intervals of Wind Power Generation," IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1166-1174, May 2014. [DOI:10.1109/TPWRS.2013.2288100]
8. [8] J. Kiviluoma et al., "Short-term energy balancing with increasing levels of wind energy," IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 769-776,Oct. 2012. [DOI:10.1109/TSTE.2012.2209210]
9. [9] C. Lowery and M. O'Malley, "Impact of wind forecast error statistics upon unit commitment," IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 760-768, Oct. 2012. [DOI:10.1109/TSTE.2012.2210150]
10. [10] A. Shortt, J. Kiviluoma, and M. O'Malley, "Accommodating variability in generation planning," IEEE Trans. Power Syst., vol. 28, no. 1, pp. 158- 169, Feb. 2013. [DOI:10.1109/TPWRS.2012.2202925]
11. [11] R. Doherty and M. O'Malley, "A new approach to quantify reserve demand in systems with significant installed wind capacity," IEEE Trans. Power Syst., vol. 20, no. 2, pp. 587-595, May 2005. [DOI:10.1109/TPWRS.2005.846206]
12. [12] A. Fabbri, T. Gomez San Roman ,J. Rivier Abbad, and V. Mendez Quezada, "Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market," IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1440-1446, Aug. 2005 [DOI:10.1109/TPWRS.2005.852148]
13. [13] H. Bludszuweit, J. Dominguez-Navarro, and A. Llombart, "Statistical analysis of wind power forecast error," IEEE Trans. Power Syst., vol. 23, no. 3, pp. 983-991, Aug. 2008. [DOI:10.1109/TPWRS.2008.922526]
14. [14] B.-M. Hodge and M. Milligan, "Wind power forecasting error distributions over multiple timescales," in Proc. IEEE Power & Energy Soc. General Meet., Detroit, MI, USA, 2011, pp. 1-8. [DOI:10.1109/PES.2011.6039388]
15. [15] N. Menemenlis, M. Huneault, and A. Robitaille, "Computation of dynamic operating balancing reserve for wind power integration for the time-horizon 1-48 hours," IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 692-702, Oct. 2012. [DOI:10.1109/TSTE.2011.2181878]
16. [16] K.Dietrich,J.M.Latorre,L.Olmos ,A. Ramos ,and J.P.Ignacio, "Stochastic unit commitment considering uncertain wind production in an isolated system," in Proc. 4th Conf. Energy Econ. Technol., Dresden, Germany, 2009, pp. 1-6.
17. [17] K.Bruninx and E.Delarue, " A Statistical Description of the Error on Wind Power Forecasts for Probablistic Reserve Sizing" IEEE Trans. Sustain. Energy, VOL. 5, NO. 3, JULY 2014. [DOI:10.1109/TSTE.2014.2320193]
18. [18] R. Billinton and G. Bai, Multistate wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy, IEEE Trans Energy Convers 23(1) (2008), 163-170. [DOI:10.1109/TEC.2006.882415]
19. [19] R. Billinton and W. Wangdee, Reliability-based transmission reinforcement planning associated with large-scale wind farms, IEEE Trans Power Syst 22(1) (2007), 34-41. [DOI:10.1109/TPWRS.2006.889126]
20. [20] S. Riahinia, A. Abbaspour, M. Fotuhi-Firuzabad and M. Moeini-Aghtaie, A Neural Network-Based Model for Wind
21. Farm Output in Probabilistic Studies of Power Systems, 21st Iranian Conference on Electrical Engineering (ICEE), 2013.
22. [21] S.Riahinia, A.Abbaspour, M.Fotuhi-Firuzabad and M. Moeini Aghtaie, " Developing a stochastic framework to determine the static reserve requirements of high-wind penetrated power systems" Journal of Intelligent & Fuzzy Systems 29 (2015) 2039-2046. [DOI:10.3233/IFS-151681]
23. [22] F. ‎ Bouffard and F‎ . ‎ D‎ . Galiana‎,‎ "Stochastic security for operations planning with significant‎ wind‎ power‎ generation," ‎IEEE Trans‎. ‎Power Syst.‎ , vol. 23, no. 2, pp. 306-316, 2008. [DOI:10.1109/TPWRS.2008.919318]
24. [23] J. M. Morales, A. J. Conejo‎ , ‎ and J‎. ‎Perez-Ruiz,‎"Economic valuation of reserves in power systems with high penetration of wind‎power," IEEE Trans‎ . ‎ Power Syst., vol. 24, no. 2, pp. 900-910, 2009. [DOI:10.1109/TPWRS.2009.2016598]
25. [24] A‎ . ‎ Papavasiliou‎ , ‎ S‎ . ‎ S‎ . ‎ Oren‎ , ‎ and R‎. ‎P‎. ‎O'Neill‎‎,‎"Reserve requirements for wind power integration‎ : ‎ A scenario-based stochastic programming fram ework," IEEE Trans‎ . ‎ Power Syst, vol. 26, no. 4, pp. 2197-2206, 2011. [DOI:10.1109/TPWRS.2011.2121095]
26. [25] A. Papavasiliou,‎ S.‎ S.‎ Oren,‎ and‎ B.‎ Rountree,‎ "Applying high performance Computing to Transmission-Constrained Stochastic Unit Commitment for‎ Renewable‎ Energy‎ Integration," IEEE Trans. Power. Syst., vol. 30, no. 3, pp. 1109-1120, 2015. [DOI:10.1109/TPWRS.2014.2341354]
27. [26] J. M. Morales, S. Pineda, A.‎ J.‎ Conejo,‎ and‎ M.‎ Carrion,‎ "Scenario reduction for futures market trading‎in‎electricity‎markets," IEEE Trans. Power Syst., vol. 24, no. 2, p. 878-888, 2009. [DOI:10.1109/TPWRS.2009.2016072]
28. [27] M. Kaut and S. W. Wallace,‎"Evaluation of scenario-generation methods for‎stochastic‎programming," Stochastic Program., vol. 3, no. 2, p. 257- 271, 2007.
29. [28] B. Hu and‎ L.‎ Wu,‎ "Robust SCUC considering continuous/discrete uncert- ainties and quick-start units: a two-stage robust optimization with mixed-integer‎ recourse," IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1407-1419, 2016. [DOI:10.1109/TPWRS.2015.2418158]
30. [29] Y. ‎ Guan and J‎ . ‎ Wang‎,‎ "Uncertainty sets for robust unit commitm ent," ‎ IEEE Trans‎. ‎Power Syst., vol. 29, no. 3, pp. 1439-1440‎, 2014. [DOI:10.1109/TPWRS.2013.2288017]
31. [30] W. Wei,‎ F.‎ Liu,‎ S.‎ Mei,‎ and‎ Y.‎ Hou,‎ "Robust Energy and Reserve Dispatch under Variable‎ Renewable‎ Generation," IEEE Trans. Smart Grid, vol.6, no.1, pp.369-380, 2015. [DOI:10.1109/TSG.2014.2317744]
32. [31] C.‎Zhao ‎and‎ Y.‎Guan,‎"Unified‎ Stochastic‎and ‎Robust‎ Unit Commitm ent," IEEE Trans. Power Syst., vol. 28, no. 3, p. 3353-3361, 2013. [DOI:10.1109/TPWRS.2013.2251916]
33. [32] L. Wu,‎M.‎Shahidehpour,‎and‎Z.‎Li,‎"Comparison of scenario-based and interval optimization approaches to stochastic‎ SCUC," IEEE Trans. Power Syst., vol. 27, no. 2, p. 913-921, 2012. [DOI:10.1109/TPWRS.2011.2164947]
34. [33] Y. Yu, P. B. Luh, E. Litvinov, T. Zheng, J. Zhao, and F. Zhao, "Grid integration of distributed wind generation: hybrid markovian and interval unit commitment," IEEE Trans. Smart Grid, vol.6, no.6, pp.3061-3072, 2015. [DOI:10.1109/TSG.2015.2430851]
35. [34] R.‎Madani,‎J.‎Lavaei,‎and‎R.‎Baldick,‎"Constraint screening for security analysis of power networks," Preprint 2015, [Online]. Available: http://www.ieor.berkeley.edu/~lavaei/SC-Screening 2015.pdf.
36. [35] A.J.Ardakani and ‎F.‎Bouffard ,‎"Identification ‎of ‎Umbrella ‎Constraints‎ in DC-Based Security-Constrained‎Optimal‎Power‎ Flow," IEEE Trans. Power Syst., vol. 28, no. 4, p. 3924-3934, 2013. [DOI:10.1109/TPWRS.2013.2271980]
37. [36] M.Doostizadeh, F.Aminifar, H.Ghasemi and H.Lesani, " Energy‎ and‎ Reserve‎ Scheduling ‎under‎ Wind‎ Power‎ Uncertainty :‎ An ‎Adjustable ‎Interval‎ Approach" IEEE Trans. Smart Grid, 1949-3053 (c) 2016. [DOI:10.1109/TSG.2016.2572639]
38. [37] D. Babosa, C. de Mattos and at all, " Different Models for ForecastingWind Power Generation: Case Study", Energies journal, 10, 2017. [DOI:10.3390/en10121976]
39. [38] HuiLiu; Hong-QiTian; ChaoChen; Yan-feiLi, " A hybrid statiscal method to predict wind speed and wind power", Renewable Energy, 35(8):1857-1861, 2010. [DOI:10.1016/j.renene.2009.12.011]
40. [39] Bonanno, F.; Capizzi, G.; Sciuto, L.; Napoli, C. Wavelet recurrent neural network with semi-parametric input data preprocessing for micro-wind power forecasting in integrated generation Systems. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16-18 June 2015. [DOI:10.1109/ICCEP.2015.7177554]
41. [40] E. Denny and M. O'Malley. Wind generation, power system operation, and emissions reduction. IEEE Transactions on Power Systems, 21(1):341-347, 2006. [DOI:10.1109/TPWRS.2005.857845]
42. [41] H. A. Gil and G. Joos. Generalized estimation of average displaced emissions by wind generation. IEEE Transactions on Power Systems, 22(3):1035-1043, 2007. [DOI:10.1109/TPWRS.2007.901482]
43. [42] T. Ackermann, J. Rivier Abbad, I. M. Dudurych, I. Erlich, H. Holttinen, J. Runge Kristoffersen, and Ejnar Sørensen. European Balancing Act. IEEE power & energy magazine, 5(6):91-103, 2007. [DOI:10.1109/MPE.2007.906511]
44. [43] E. A. DeMeo, W. Grant, M. R. Milligan, and M. J. Schuerger. Wind plant integration. IEEE power & energy magazine, 3(6):38-46, 2005. [DOI:10.1109/MPAE.2005.1524619]
45. [44] E. A. DeMeo, G. A. Jordan, C. Kalich, J. King, M. R. Milligan, C. Murley, B. Oakleak, and M. J. Schuerger. Accommodating wind's natural behavior. IEEE power & energy magazine, 5(6):68-77, 2007. [DOI:10.1109/MPE.2007.906562]
46. [45] Passino, K. and Yurkovich, S. (1998). Fuzzy Control, Addison Wesley Longman, Menlo Park, CA.
47. [46] Timothy J Ross, " Fuzzy Logic with Engineering Applications , Second Edition " 2004 John Wiley & Sons, Ltd, ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
48. [47] H.Aling," A batch least squares lattice algorithm" IEEE conference on decision and control, 1992,3709 - 3710 vol.4.
49. [48] P.Monsurrò , A.Trifiletti "Faster, Stabler and Simpler-A Recursive Least Squares Algorithm Exploiting the Frisch-Waugh-Lovell Theorem" IEEE Trans,circuits and systems., vol.64,issue:3,march 2017. [DOI:10.1109/TCSII.2016.2565725]
50. [49] L.R.Vega , H.Rey , J.Benesty and S.Tressens, " A Fast Robust Recursive Least Squares Algorithm " IEEE Trans,vol.57, issue:3, march 2009. [DOI:10.1109/TSP.2008.2010643]
51. [50] L.fausett,"fundamental of Neural Network: Architecture, Algirithms and applications",Prentice Hall, 1994
52. [51] G.Mitchison,"Learning Algorithms And Network of Neurons",Reading,Ma:Addison-wily, 1989.



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Davoudi M. A New Method for Reducing Uncertainty of Wind Power Based on Fuzzy RLS-MLFE. ieijqp 2020; 9 (4) :24-34
URL: http://ieijqp.ir/article-1-659-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 4 (11-2020) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4712