[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
IEEE
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 13، شماره 3 - ( 9-1403 ) ::
جلد 13 شماره 3 صفحات 0-0 برگشت به فهرست نسخه ها
ارائه یک استراتژی حفاظتی برای کاهش تأثیر تولیدات پراکنده در سیستم‌های توزیع انرژی الکتریکی
رائد علی فرحان1 ، غضنفر شاهقلیان*2 ، بهادر فانی1
1- گروه مهندسی برق، واحد خوراسگان، دانشگاه آزاد اسلامی، خوراسگان، ایران
2- گروه مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
چکیده:   (886 مشاهده)
شبکه توزیع معمولاً ماهیت شعاعی دارد و بارها به وسیله سیستم توزیع به شبکه الکتریکی اصلی متصل می‌شوند. نفوذ منابع پراکنده در یک سیستم توزیع تأثیر زیادی بر سیستم خواهد داشت که حفاظت از سیستم قدرت یکی از مسائل اصلی است. امروزه انواع مختلف منابع انرژی تجدیدپذیر در شبکه الکتریکی ادغام شده­اند و تعداد زیادی از این ژنراتورهای پراکنده در نزدیکی بار قرار دارند. منابع انرژی پراکنده در مقیاس کوچک به طور موثر بارهای محلی را پشتیبانی می‌کنند و توان اضافی را به شبکه اصلی تزریق می‌کنند. انرژی خورشیدی و انرژی بادی از منابع پراکنده مورد استفاده هستند. زمانی که این منابع در حداکثر ظرفیت خود تولید می­کنند، تقاضای بار محلی تقریباً تامین خواهد شد و بنابراین بیشتر توان تولید شده به شبکه وارد می­شود. رله‌های اضافه جریان که در بالادست خط توزیع قرار دارند بر اساس مقدار جریان گذرا از خط تنظیم می‌شوند. هنگامی که این سطح از مقدار جریان تغییر می‌کند، عملکرد رله اضافه جریان با چالش‌های مختلفی ممکن است که روبرو شود. در این مقاله چالش‌های تولید پراکندها مبتنی بر انرژی تجدیدپذیر در عملکرد رله حفاظتی بررسی شده و یک الگوریتم عملکرد رله برای غلبه بر این چالش‌ها ارائه شده است. نتایج شبیه­سازی نشان می‌دهند در رویکرد پیشنهادی، رله می‌تواند با شرایط مختلف شبکه سازگار شود و عمل نماید.
واژه‌های کلیدی: استراتژی حفاظتی، تولید پراکنده، رله اضافه جریان، سیستم توزیع
     
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1402/11/29 | پذیرش: 1403/7/8 | انتشار: 1404/1/17
فهرست منابع
1. سالاری مجید، حقیقت‌دار فشارکی فریبرز، "جایابی و تعیین اندازه بهینه خازن‎ها و منابع تولید پراکنده با هدف بهبود قابلیت اطمینان و حداقل نمودن تلفات در شبکه‎های توزیع"، روش‌های هوشمند در صنعت برق، دوره: 11، ش.: 43، ص.: 83-94، 1399.
2. ستار مه‌رو, سمیعی‌مقدم محمود, آذرفر آزیتا, صالحی نسرین، واحدی مجتبی، "بهینه‌سازی مشترک سیستم‌های انرژی یکپارچه در حضور منابع انرژی تجدیدپذیر، سیستم‌های تبدیل توان به گاز و سیستم ذخیره‌سازی انرژی"، روش‌های هوشمند در صنعت برق، دوره: 15، ش.: 57، ص.: 15-30، 1403.
3. سلطانیان سعید, فانی بهادر، "مدیریت منابع تولید پراکنده برای بازیابی هماهنگی حفاظتی با استفاده از ساختار سیستم‌های چند-‌عاملی"، روش‌های هوشمند در صنعت برق، دروه: 15، ش.: 59، ص.: 125-142، 1403.
4. شاکری‌نیا سعید، فتاحی می‌ابادی عباس، واحدی مجتبی، صالحی نسرین، سمیعی‌مقدم محمود، "بهره‌برداری بهینه ریزشبکه‌ها با استفاده از الگوریتم تکاملی دو سطحی در حضور قطعی منابع انرژی تجدیدپذیر"، نشریه کیفیت و بهره وری صنعت برق ایران، دوره: 12، ش.: 4، ص.: 72-87، 1402.
5. صابری رضا، فلقی حمید، اسماعیلی مصطفی، "طراحی منابع تولیدپراکنده در شبکه های توزیع با هدف بهبود تاب‌آوری"، نشریه کیفیت و بهره وری صنعت برق ایران، دوره: 9، ش.: 4، ص.: 35-49، 1399.
6. فولادگر مهدی، رک‌رک اسمعیل، فانی بهادر، شاهقلیان، غضنفر، "تحلیل حساسیت مسیر DFIG نسبت به پارامترهای کنترلی در برابر تغییر سرعت باد و تغییر امپدانس خط اتصال DFIG به شبکه"، .روش‌های هوشمند در صنعت برق، دوره: 5، ش.: 20، ص.: 37-54، 1393.
7. Aghadavoodi, E. and Shahgholian, G., "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX", Applied Thermal Engineering, vol. 133, pp. 381-395, 2018. [DOI:10.1016/j.applthermaleng.2018.01.075]
8. Barra, P.H.A., et al., "A survey on adaptive protection of microgrids and distribution systems with distributed generators", Renewable and Sustainable Energy Reviews, vol. 118, Article Number: 109524, 2020. [DOI:10.1016/j.rser.2019.109524]
9. Bishop, M.T., et al., "Overcurrent protection alternatives for underground distribution systems", IEEE Trans. on Power Delivery, vol. 10, no. 1, pp. 252-257, Jan. 1995. [DOI:10.1109/61.368392]
10. Choi, M.G., et al., "Adaptive protection method of distribution networks using the sensitivity analysis for changed network topologies based on base network topology", IEEE Access, vol. 8, pp. 148169-148180, 2020. [DOI:10.1109/ACCESS.2020.3015517]
11. Coffele, F., et al., "An adaptive overcurrent protection scheme for distribution networks", IEEE Trans. on Power Delivery, vol. 30, no. 2, pp. 561-568, 2015. [DOI:10.1109/TPWRD.2013.2294879]
12. Deyhimi, N., et al., "Comparative multi-objective investigation of radial and ring distribution system in the presence of DGs", Proceeding of the IEEE/EEEIC, pp. 1-6, Bari, Italy, Sept. 2021. [DOI:10.1109/EEEIC/ICPSEurope51590.2021.9584527]
13. Dulău, L.I., et al., "Effects of distributed generation on electric power systems", Procedia Technology, vol. 12, pp. 681-686, 2014. [DOI:10.1016/j.protcy.2013.12.549]
14. Fayazi, H., "An offline three-level protection coordination scheme for distribution systems considering transient stability of synchronous distributed generation", International Journal of Electrical Power and Energy Systems, vol. 131, Article Number: 107069, 2021. [DOI:10.1016/j.ijepes.2021.107069]
15. Fayazi, H., et al., "An offline three-level protection coordination scheme for distribution systems considering transient stability of synchronous distributed generation", Internatio-nal Journal of Electrical Power and Energy Systems, vol. 131, Article Number: 107069, 2021. [DOI:10.1016/j.ijepes.2021.107069]
16. Gutierrez-Rojas, D., "Review of the state of the art on adaptive protection for microgrids based on communications", IEEE Trans. on Industrial Informatics, vol. 17, no. 3, pp. 1539-1552, 2021. [DOI:10.1109/TII.2020.3006845]
17. H.J. Laaksonen, "Protection principles for future microgrids", IEEE Trans. on Power Electronics, vol. 25, no. 12, pp. 2910-2918, 2010. [DOI:10.1109/TPEL.2010.2066990]
18. Haghshenas, G., et al., "High step-up boost-flyback converter with soft switching for photovoltaic applications", Journal of Circuits, Systems, and Computers, Vol. 28, No. 1, pp. 1-16, 2019. [DOI:10.1142/S0218126619500142]
19. Islam, K., "A review on adaptive power system protection schemes for future smart and micro grids, challenges and opportunities", Electric Power Systems Research, vol. 230, Article Number: 110241, 2024. [DOI:10.1016/j.epsr.2024.110241]
20. Keyvani-Boroujeni, B., et al., "Virtual impedance-based droop control scheme to avoid power quality and stability problems in VSI-dominated microgrids", IEEE Access, vol. 9, pp. 144999-145011, 2021. [DOI:10.1109/ACCESS.2021.3122800]
21. Kiani, A., "A multi-agent solution to multi-thread protection of DG-dominated distribution networks", International Journal of Electrical Power and Energy Systems, vol. 130, Article Number: 106921, 2021. [DOI:10.1016/j.ijepes.2021.106921]
22. Memon, A.A., Kauhaniemi, K., "A critical review of ac Micr-ogrid protection issues and available solutions", Electric Power Systems Research, vol. 129, pp. 23-31, Dec. 2015. [DOI:10.1016/j.epsr.2015.07.006]
23. Meskin, M., et al., "Impact of distributed generation on the protection systems of distribution networks: analysis and remedies- review paper", IET Generation, Transmission and Distribution, vol. 14, no. 24, pp. 5944-5960, 2020. [DOI:10.1049/iet-gtd.2019.1652]
24. Sandhya, K, Chatterjee, K., "A review on the state of the art of proliferating abilities of distributed generation deployment for achieving resilient distribution system", Journal of Cleaner Production, vol. 287, Article Number: 125023, 2021. [DOI:10.1016/j.jclepro.2020.125023]
25. Sharma, A., Panigrahi, B.K., "Interphase fault relaying scheme to mitigate sympathetic tripping in meshed distribution system", IEEE Trans. on Industry Applications, vol. 55, no. 1, pp. 850-857, 2019. [DOI:10.1109/TIA.2018.2866263]
26. Sharma, S.K., "Voltage flicker mitigation employing smart loads with high penetration of renewable energy in distribution systems", IEEE Trans. on Sustainable Energy, vol. 8, no. 1, pp. 414-424, 2017. [DOI:10.1109/TSTE.2016.2603512]
27. Stillman, R.H., "Modeling failure data of overhead distribution systems", IEEE Trans. on Power Delivery, vol. 15, no. 4, pp. 1238-1242, 2000. [DOI:10.1109/61.891509]
28. Uddin, M.N., "Adaptive and optimal overcurrent protection of wind farms with improved reliability", IEEE Trans. on Industry Applications, vol. 58, no. 3, pp. 3342-3352, 2022. [DOI:10.1109/TIA.2022.3147151]
29. Vasconcelos, L.H.P., et al., "Hybrid optimization algorithm applied to adaptive protection in distribution systems with distributed generation", Electric Power Systems Research, vol. 202, Article Number: 107605, 2022. [DOI:10.1016/j.epsr.2021.107605]
30. Vempalle, R., et al., "Optimal analysis of time varying load radial distribution system with photovoltaic and wind generating system using novel hybrid optimization technique", Renewable Energy Focus, vol. 41, pp. 246-257, 2022. [DOI:10.1016/j.ref.2022.03.004]
31. سالاری مجید، حقیقت‌دار فشارکی فریبرز، "جایابی و تعیین اندازه بهینه خازن‎ها و منابع تولید پراکنده با هدف بهبود قابلیت اطمینان و حداقل نمودن تلفات در شبکه‎های توزیع"، روش‌های هوشمند در صنعت برق، دوره: 11، ش.: 43، ص.: 83-94، 1399.
32. ستار مه‌رو, سمیعی‌مقدم محمود, آذرفر آزیتا, صالحی نسرین، واحدی مجتبی، "بهینه‌سازی مشترک سیستم‌های انرژی یکپارچه در حضور منابع انرژی تجدیدپذیر، سیستم‌های تبدیل توان به گاز و سیستم ذخیره‌سازی انرژی"، روش‌های هوشمند در صنعت برق، دوره: 15، ش.: 57، ص.: 15-30، 1403.
33. سلطانیان سعید, فانی بهادر، "مدیریت منابع تولید پراکنده برای بازیابی هماهنگی حفاظتی با استفاده از ساختار سیستم‌های چند-‌عاملی"، روش‌های هوشمند در صنعت برق، دروه: 15، ش.: 59، ص.: 125-142، 1403.
34. شاکری‌نیا سعید، فتاحی می‌ابادی عباس، واحدی مجتبی، صالحی نسرین، سمیعی‌مقدم محمود، "بهره‌برداری بهینه ریزشبکه‌ها با استفاده از الگوریتم تکاملی دو سطحی در حضور قطعی منابع انرژی تجدیدپذیر"، نشریه کیفیت و بهره وری صنعت برق ایران، دوره: 12، ش.: 4، ص.: 72-87، 1402.
35. صابری رضا، فلقی حمید، اسماعیلی مصطفی، "طراحی منابع تولیدپراکنده در شبکه های توزیع با هدف بهبود تاب‌آوری"، نشریه کیفیت و بهره وری صنعت برق ایران، دوره: 9، ش.: 4، ص.: 35-49، 1399.
36. فولادگر مهدی، رک‌رک اسمعیل، فانی بهادر، شاهقلیان، غضنفر، "تحلیل حساسیت مسیر DFIG نسبت به پارامترهای کنترلی در برابر تغییر سرعت باد و تغییر امپدانس خط اتصال DFIG به شبکه"، .روش‌های هوشمند در صنعت برق، دوره: 5، ش.: 20، ص.: 37-54، 1393.
37. Aghadavoodi, E. and Shahgholian, G., "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX", Applied Thermal Engineering, vol. 133, pp. 381-395, 2018. [DOI:10.1016/j.applthermaleng.2018.01.075]
38. Barra, P.H.A., et al., "A survey on adaptive protection of microgrids and distribution systems with distributed generators", Renewable and Sustainable Energy Reviews, vol. 118, Article Number: 109524, 2020. [DOI:10.1016/j.rser.2019.109524]
39. Bisheh, H. and et al., "An adaptive fuse-saving protection scheme for active distribution networks", International Journal of Electrical Power and Energy Systems, vol. 144, Article Number: 108625, 2023. [DOI:10.1016/j.ijepes.2022.108625]
40. Bisheh, H., et al., "Fuse saving coordination scheme for active distribution systems: State‐of‐the‐art and a novel quasi‐voltage current based scheme", IET Generation, Transmission and Distribution, vol. 18, no. 4, pp. 729-755, 2024, [DOI:10.1049/gtd2.13110]
41. Bishop, M.T., et al., "Overcurrent protection alternatives for underground distribution systems", IEEE Trans. on Power Delivery, vol. 10, no. 1, pp. 252-257, Jan. 1995. [DOI:10.1109/61.368392]
42. Choi, M.G., et al., "Adaptive protection method of distribution networks using the sensitivity analysis for changed network topologies based on base network topology", IEEE Access, vol. 8, pp. 148169-148180, 2020. [DOI:10.1109/ACCESS.2020.3015517]
43. Coffele, F., et al., "An adaptive overcurrent protection scheme for distribution networks", IEEE Trans. on Power Delivery, vol. 30, no. 2, pp. 561-568, 2015. [DOI:10.1109/TPWRD.2013.2294879]
44. Deyhimi, N., et al., "Comparative multi-objective investigation of radial and ring distribution system in the presence of DGs", Proceeding of the IEEE/EEEIC, pp. 1-6, Bari, Italy, Sept. 2021. [DOI:10.1109/EEEIC/ICPSEurope51590.2021.9584527]
45. Dulău, L.I., et al., "Effects of distributed generation on electric power systems", Procedia Technology, vol. 12, pp. 681-686, 2014. [DOI:10.1016/j.protcy.2013.12.549]
46. Fayazi, H., "An offline three-level protection coordination scheme for distribution systems considering transient stability of synchronous distributed generation", International Journal of Electrical Power and Energy Systems, vol. 131, Article Number: 107069, 2021. [DOI:10.1016/j.ijepes.2021.107069]
47. Fayazi, H., et al., "An offline three-level protection coordination scheme for distribution systems considering transient stability of synchronous distributed generation", Internatio-nal Journal of Electrical Power and Energy Systems, vol. 131, Article Number: 107069, 2021. [DOI:10.1016/j.ijepes.2021.107069]
48. Gutierrez-Rojas, D., "Review of the state of the art on adaptive protection for microgrids based on communications", IEEE Trans. on Industrial Informatics, vol. 17, no. 3, pp. 1539-1552, 2021. [DOI:10.1109/TII.2020.3006845]
49. H.J. Laaksonen, "Protection principles for future microgrids", IEEE Trans. on Power Electronics, vol. 25, no. 12, pp. 2910-2918, 2010. [DOI:10.1109/TPEL.2010.2066990]
50. Haghshenas, G., et al., "High step-up boost-flyback converter with soft switching for photovoltaic applications", Journal of Circuits, Systems, and Computers, Vol. 28, No. 1, pp. 1-16, 2019. [DOI:10.1142/S0218126619500142]
51. Islam, K., "A review on adaptive power system protection schemes for future smart and micro grids, challenges and opportunities", Electric Power Systems Research, vol. 230, Article Number: 110241, 2024. [DOI:10.1016/j.epsr.2024.110241]
52. Kasap, H., and et. Al., "Tap staggering analysis and effects on the adaptive protection system in networks with renewable energy sources", IEEE Access, vol. 11, pp. 138623-138637, 2023. [DOI:10.1109/ACCESS.2023.3339782]
53. Keyvani-Boroujeni, B., et al., "Virtual impedance-based droop control scheme to avoid power quality and stability problems in VSI-dominated microgrids", IEEE Access, vol. 9, pp. 144999-145011, 2021. [DOI:10.1109/ACCESS.2021.3122800]
54. Kiani, A., "A multi-agent solution to multi-thread protection of DG-dominated distribution networks", International Journal of Electrical Power and Energy Systems, vol. 130, Article Number: 106921, 2021. [DOI:10.1016/j.ijepes.2021.106921]
55. Memon, A.A., Kauhaniemi, K., "A critical review of ac Micr-ogrid protection issues and available solutions", Electric Power Systems Research, vol. 129, pp. 23-31, Dec. 2015. [DOI:10.1016/j.epsr.2015.07.006]
56. Merabet, O., and et. Al., "An adaptive protection coordination for microgrids utilizing an improved optimization technique for user-defined DOCRs characteristics with different groups of settings considering N-1 contingency", Expert Systems with Applications, vol. 248, Article Number: 123449, 2024. [DOI:10.1016/j.eswa.2024.123449]
57. Meskin, M., et al., "Impact of distributed generation on the protection systems of distribution networks: analysis and remedies- review paper", IET Generation, Transmission and Distribution, vol. 14, no. 24, pp. 5944-5960, 2020. [DOI:10.1049/iet-gtd.2019.1652]
58. Mourinho, F.A., Assis, T.M.L., "Impact of cascade disconnection of distributed energy resources on bulk power system stability: Modeling and mitigation requirements", Journal of Modern Power Systems and Clean Energy, vol. 11, no. 2, pp. 412-420, March 2023. [DOI:10.35833/MPCE.2022.000365]
59. Sachit, A.H., et al., "Analysis and implementation of second-order step-up converter using winding cross coupled inductors for photovoltaic applications", Journal of Solar Energy Research, vol. 8, no. 2, pp. 1516-1525, 2023.
60. Sandhya, K, Chatterjee, K., "A review on the state of the art of proliferating abilities of distributed generation deployment for achieving resilient distribution system", Journal of Cleaner Production, vol. 287, Article Number: 125023, 2021. [DOI:10.1016/j.jclepro.2020.125023]
61. Sati, T.E. and et. Al., "Adaptive harmonic-based protection coordination for inverter-dominated isolated microgrids considering N-1 contingency", International Journal of Electrical Power and Energy Systems, vol. 156, Article Number: 109750, 2024. [DOI:10.1016/j.ijepes.2023.109750]
62. Sharma, A., Panigrahi, B.K., "Interphase fault relaying scheme to mitigate sympathetic tripping in meshed distribution system", IEEE Trans. on Industry Applications, vol. 55, no. 1, pp. 850-857, 2019. [DOI:10.1109/TIA.2018.2866263]
63. Sharma, S.K., "Voltage flicker mitigation employing smart loads with high penetration of renewable energy in distribution systems", IEEE Trans. on Sustainable Energy, vol. 8, no. 1, pp. 414-424, 2017. [DOI:10.1109/TSTE.2016.2603512]
64. Stillman, R.H., "Modeling failure data of overhead distribution systems", IEEE Trans. on Power Delivery, vol. 15, no. 4, pp. 1238-1242, 2000. [DOI:10.1109/61.891509]
65. Uddin, M.N., "Adaptive and optimal overcurrent protection of wind farms with improved reliability", IEEE Trans. on Industry Applications, vol. 58, no. 3, pp. 3342-3352, 2022. [DOI:10.1109/TIA.2022.3147151]
66. Vasconcelos, L.H.P., et al., "Hybrid optimization algorithm applied to adaptive protection in distribution systems with distributed generation", Electric Power Systems Research, vol. 202, Article Number: 107605, 2022. [DOI:10.1016/j.epsr.2021.107605]
67. Vempalle, R., et al., "Optimal analysis of time varying load radial distribution system with photovoltaic and wind generating system using novel hybrid optimization technique", Renewable Energy Focus, vol. 41, pp. 246-257, 2022. [DOI:10.1016/j.ref.2022.03.004]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ali Farhan R, Shahgholian G, Fani B. Providing a Protection Strategy to Reduce the Impact of Distributed Generation in Electrical Energy Distribution Systems. ieijqp 2024; 13 (3)
URL: http://ieijqp.ir/article-1-987-fa.html

علی فرحان رائد، شاهقلیان غضنفر، فانی بهادر. ارائه یک استراتژی حفاظتی برای کاهش تأثیر تولیدات پراکنده در سیستم‌های توزیع انرژی الکتریکی. نشریه کیفیت و بهره وری صنعت برق ایران. 1403; 13 (3)

URL: http://ieijqp.ir/article-1-987-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 3 - ( 9-1403 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 38 queries by YEKTAWEB 4710