1. E. Karimi, A. Ebrahimi, and F. Mahmud, "Exploring Self-Organized Criticality Conditions in Iran Bulk Power System with Disturbance Times Series," Scientia Iranica, vol. 21, no. 6, pp. 2264-2272, 2014. 2. W. Yang, S. N. Sparrow, M. Ashtine, D. C. H. Wallom, and T. Morstyn, "Resilient by design: Preventing wildfires and blackouts with microgrids," Appl Energy, vol. 313, p. 118793, 2022, doi: 10.1016/j.apenergy.2022.118793. [ DOI:10.1016/j.apenergy.2022.118793] 3. M. W. Altaf, M. T. Arif, S. N. Islam, and Md. E. Haque, "Microgrid Protection Challenges and Mitigation Approaches-A Comprehensive Review," IEEE Access, vol. 10, pp. 38895-38922, 2022, doi: 10.1109/ACCESS.2022.3165011. [ DOI:10.1109/ACCESS.2022.3165011] 4. G. Kaur, A. Prakash, and K. U. Rao, "A critical review of Microgrid adaptive protection techniques with distributed generation," Renewable Energy Focus, vol. 39, pp. 99-109, Dec. 2021, doi: 10.1016/j.ref.2021.07.005. [ DOI:10.1016/j.ref.2021.07.005] 5. A. A. Memon and K. Kauhaniemi, "A critical review of AC Microgrid protection issues and available solutions," Electric Power Systems Research, vol. 129, pp. 23-31, Dec. 2015, doi: 10.1016/j.epsr.2015.07.006. [ DOI:10.1016/j.epsr.2015.07.006] 6. A. N. Sheta, G. M. Abdulsalam, B. E. Sedhom, and A. A. Eladl, "Comparative framework for AC-microgrid protection schemes: challenges, solutions, real applications, and future trends," Protection and Control of Modern Power Systems, vol. 8, no. 1, p. 24, Dec. 2023, doi: 10.1186/s41601-023-00296-9. [ DOI:10.1186/s41601-023-00296-9] 7. B. J. Brearley and R. R. Prabu, "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, vol. 67, pp. 988-997, 2017, doi: 10.1016/j.rser.2016.09.047. [ DOI:10.1016/j.rser.2016.09.047] 8. C. Cepeda et al., "Intelligent Fault Detection System for Microgrids," Energies (Basel), vol. 13, no. 5, p. 1223, 2020, doi: 10.3390/en13051223. [ DOI:10.3390/en13051223] 9. A. Hooshyar and R. Iravani, "Microgrid Protection," Proceedings of the IEEE, vol. 105, no. 7, pp. 1332-1353, 2017, doi: 10.1109/JPROC.2017.2669342. [ DOI:10.1109/JPROC.2017.2669342] 10. Ch. D. Prasad, M. Biswal, and A. Y. Abdelaziz, "Adaptive differential protection scheme for wind farm integrated power network," Electric Power Systems Research, vol. 187, p. 106452, 2020, doi: 10.1016/j.epsr.2020.106452. [ DOI:10.1016/j.epsr.2020.106452] 11. K. A and V. C, "Design of adaptive protection coordination scheme using SVM for an AC microgrid," Energy Reports, vol. 11, pp. 4688-4712, Jun. 2024, doi: 10.1016/j.egyr.2024.04.021. [ DOI:10.1016/j.egyr.2024.04.021] 12. M. Barkhi, J. Pourhossein, and S. A. Hosseini, "Integrating fault detection and classification in microgrids using supervised machine learning considering fault resistance uncertainty," Sci Rep, vol. 14, no. 1, p. 28466, Nov. 2024, doi: 10.1038/s41598-024-77982-7. [ DOI:10.1038/s41598-024-77982-7] 13. P. T. Manditereza and R. C. Bansal, "Protection of microgrids using voltage-based power differential and sensitivity analysis," International Journal of Electrical Power & Energy Systems, vol. 118, p. 105756, 2020, doi: 10.1016/j.ijepes.2019.105756. [ DOI:10.1016/j.ijepes.2019.105756] 14. L. He, Z. Shuai, X. Chu, W. Huang, Y. Feng, and Z. J. Shen, "Waveform Difference Feature-Based Protection Scheme for Islanded Microgrids," IEEE Trans Smart Grid, vol. 12, no. 3, pp. 1939-1952, 2021, doi: 10.1109/TSG.2020.3048191. [ DOI:10.1109/TSG.2020.3048191] 15. W. Liu, J. Zhao, and D. Wang, "Data mining for energy systems: Review and prospect," WIREs Data Mining and Knowledge Discovery, vol. 11, no. 4, 2021, doi: 10.1002/widm.1406. [ DOI:10.1002/widm.1406] 16. S. Jamali and S. Ranjbar, "Phase selective protection in microgrids using combined data mining and modal decomposition method," International Journal of Electrical Power & Energy Systems, vol. 128, p. 106727, 2021, doi: 10.1016/j.ijepes.2020.106727. [ DOI:10.1016/j.ijepes.2020.106727] 17. D. S. Kumar, D. Srinivasan, and T. Reindl, "A Fast and Scalable Protection Scheme for Distribution Networks With Distributed Generation," IEEE Transactions on Power Delivery, vol. 31, no. 1, pp. 67-75, Feb. 2016, doi: 10.1109/TPWRD.2015.2464107. [ DOI:10.1109/TPWRD.2015.2464107] 18. S. Kar, S. R. Samantaray, and M. D. Zadeh, "Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme," IEEE Syst J, vol. 11, no. 2, pp. 1161-1169, 2017, doi: 10.1109/JSYST.2014.2380432. [ DOI:10.1109/JSYST.2014.2380432] 19. T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Trans Inf Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967, doi: 10.1109/TIT.1967.1053964. [ DOI:10.1109/TIT.1967.1053964] 20. J. Marín-Quintero, C. Orozco-Henao, W. S. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, "Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector," Appl Soft Comput, vol. 98, p. 106839, 2021, doi: 10.1016/j.asoc.2020.106839. [ DOI:10.1016/j.asoc.2020.106839] 21. T. F. Moraes, L. Lovisolo, and L. F. C. Monteiro, "Fault location in distribution systems from analysis of the energy of sequence component waveforms," IET Generation, Transmission & Distribution, vol. 12, no. 9, pp. 1951-1960, May 2018, doi: 10.1049/iet-gtd.2017.0693. [ DOI:10.1049/iet-gtd.2017.0693] 22. E. Casagrande, W. L. Woon, H. H. Zeineldin, and N. H. Kan'an, "Data mining approach to fault detection for isolated inverter‐based microgrids," IET Generation, Transmission & Distribution, vol. 7, no. 7, pp. 745-754, Jul. 2013, doi: 10.1049/iet-gtd.2012.0518. [ DOI:10.1049/iet-gtd.2012.0518] 23. "VII. Mathematical contributions to the theory of evolution.-III. Regression, heredity, and panmixia," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 187, pp. 253-318, Dec. 1896, doi: 10.1098/rsta.1896.0007. [ DOI:10.1098/rsta.1896.0007] 24. J. Rogel-Salazar, Data Science and Analytics with Python Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Illustrate. CRC Press, 2017.
|