Adaptive protection in microgrid using KNN based on fault current symmetric components
|
Morteza Barkhi , Javad Pourhossein *1 , Seyed Ali Hosseini  |
|
|
Abstract: (69 Views) |
Reliable protection of microgrids faces significant challenges due to the uncertainty of renewable resources and non-radiative operation. This paper presents a novel adaptive protection scheme based on data mining using the K-Nearest Neighbor (KNN) algorithm, which relies only on local measurements (effective values and symmetric components) and does not require a communication infrastructure. Key innovations of this design include complete independence from communication channels (leading to cost reduction and increased reliability), the ability to simultaneously detect and classify faults using local data, and comprehensive consideration of operational uncertainties (including fault tolerance, different levels of renewable generation, load levels, and different microgrid operating modes) in the analysis and training process. For evaluation, a comprehensive database of different scenarios was created using simulation in DIgSILENT software and the KNN algorithm was implemented in Python. The key results confirm the very high efficiency of the proposed method; so that the overall average accuracy of the KNN algorithm in correctly detecting and classifying faults in all protection devices of the test network was about 95.2%. It is worth noting that the accuracy in many protection points was higher than 98% and in some cases reached 100%. These findings indicate that the proposed KNN-based approach provides an effective, accurate, and reliable solution for adaptive protection of microgrids without the need for communications and considering real-world uncertainties.
|
|
Keywords: Microgrid protection, data mining, uncertainty, symmetric components |
|
Full-Text [DOCX 939 kb]
(30 Downloads)
|
Type of Study: Research |
Received: 2025/02/7 | Accepted: 2025/04/19 | Published: 2025/04/30
|
|
|
|
|
References |
1. E. Karimi, A. Ebrahimi, and F. Mahmud, "Exploring Self-Organized Criticality Conditions in Iran Bulk Power System with Disturbance Times Series," Scientia Iranica, vol. 21, no. 6, pp. 2264-2272, 2014. 2. W. Yang, S. N. Sparrow, M. Ashtine, D. C. H. Wallom, and T. Morstyn, "Resilient by design: Preventing wildfires and blackouts with microgrids," Appl Energy, vol. 313, p. 118793, 2022, doi: 10.1016/j.apenergy.2022.118793. [ DOI:10.1016/j.apenergy.2022.118793] 3. M. W. Altaf, M. T. Arif, S. N. Islam, and Md. E. Haque, "Microgrid Protection Challenges and Mitigation Approaches-A Comprehensive Review," IEEE Access, vol. 10, pp. 38895-38922, 2022, doi: 10.1109/ACCESS.2022.3165011. [ DOI:10.1109/ACCESS.2022.3165011] 4. G. Kaur, A. Prakash, and K. U. Rao, "A critical review of Microgrid adaptive protection techniques with distributed generation," Renewable Energy Focus, vol. 39, pp. 99-109, Dec. 2021, doi: 10.1016/j.ref.2021.07.005. [ DOI:10.1016/j.ref.2021.07.005] 5. A. A. Memon and K. Kauhaniemi, "A critical review of AC Microgrid protection issues and available solutions," Electric Power Systems Research, vol. 129, pp. 23-31, Dec. 2015, doi: 10.1016/j.epsr.2015.07.006. [ DOI:10.1016/j.epsr.2015.07.006] 6. A. N. Sheta, G. M. Abdulsalam, B. E. Sedhom, and A. A. Eladl, "Comparative framework for AC-microgrid protection schemes: challenges, solutions, real applications, and future trends," Protection and Control of Modern Power Systems, vol. 8, no. 1, p. 24, Dec. 2023, doi: 10.1186/s41601-023-00296-9. [ DOI:10.1186/s41601-023-00296-9] 7. B. J. Brearley and R. R. Prabu, "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, vol. 67, pp. 988-997, 2017, doi: 10.1016/j.rser.2016.09.047. [ DOI:10.1016/j.rser.2016.09.047] 8. C. Cepeda et al., "Intelligent Fault Detection System for Microgrids," Energies (Basel), vol. 13, no. 5, p. 1223, 2020, doi: 10.3390/en13051223. [ DOI:10.3390/en13051223] 9. A. Hooshyar and R. Iravani, "Microgrid Protection," Proceedings of the IEEE, vol. 105, no. 7, pp. 1332-1353, 2017, doi: 10.1109/JPROC.2017.2669342. [ DOI:10.1109/JPROC.2017.2669342] 10. Ch. D. Prasad, M. Biswal, and A. Y. Abdelaziz, "Adaptive differential protection scheme for wind farm integrated power network," Electric Power Systems Research, vol. 187, p. 106452, 2020, doi: 10.1016/j.epsr.2020.106452. [ DOI:10.1016/j.epsr.2020.106452] 11. K. A and V. C, "Design of adaptive protection coordination scheme using SVM for an AC microgrid," Energy Reports, vol. 11, pp. 4688-4712, Jun. 2024, doi: 10.1016/j.egyr.2024.04.021. [ DOI:10.1016/j.egyr.2024.04.021] 12. M. Barkhi, J. Pourhossein, and S. A. Hosseini, "Integrating fault detection and classification in microgrids using supervised machine learning considering fault resistance uncertainty," Sci Rep, vol. 14, no. 1, p. 28466, Nov. 2024, doi: 10.1038/s41598-024-77982-7. [ DOI:10.1038/s41598-024-77982-7] 13. P. T. Manditereza and R. C. Bansal, "Protection of microgrids using voltage-based power differential and sensitivity analysis," International Journal of Electrical Power & Energy Systems, vol. 118, p. 105756, 2020, doi: 10.1016/j.ijepes.2019.105756. [ DOI:10.1016/j.ijepes.2019.105756] 14. L. He, Z. Shuai, X. Chu, W. Huang, Y. Feng, and Z. J. Shen, "Waveform Difference Feature-Based Protection Scheme for Islanded Microgrids," IEEE Trans Smart Grid, vol. 12, no. 3, pp. 1939-1952, 2021, doi: 10.1109/TSG.2020.3048191. [ DOI:10.1109/TSG.2020.3048191] 15. W. Liu, J. Zhao, and D. Wang, "Data mining for energy systems: Review and prospect," WIREs Data Mining and Knowledge Discovery, vol. 11, no. 4, 2021, doi: 10.1002/widm.1406. [ DOI:10.1002/widm.1406] 16. S. Jamali and S. Ranjbar, "Phase selective protection in microgrids using combined data mining and modal decomposition method," International Journal of Electrical Power & Energy Systems, vol. 128, p. 106727, 2021, doi: 10.1016/j.ijepes.2020.106727. [ DOI:10.1016/j.ijepes.2020.106727] 17. D. S. Kumar, D. Srinivasan, and T. Reindl, "A Fast and Scalable Protection Scheme for Distribution Networks With Distributed Generation," IEEE Transactions on Power Delivery, vol. 31, no. 1, pp. 67-75, Feb. 2016, doi: 10.1109/TPWRD.2015.2464107. [ DOI:10.1109/TPWRD.2015.2464107] 18. S. Kar, S. R. Samantaray, and M. D. Zadeh, "Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme," IEEE Syst J, vol. 11, no. 2, pp. 1161-1169, 2017, doi: 10.1109/JSYST.2014.2380432. [ DOI:10.1109/JSYST.2014.2380432] 19. T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Trans Inf Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967, doi: 10.1109/TIT.1967.1053964. [ DOI:10.1109/TIT.1967.1053964] 20. J. Marín-Quintero, C. Orozco-Henao, W. S. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, "Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector," Appl Soft Comput, vol. 98, p. 106839, 2021, doi: 10.1016/j.asoc.2020.106839. [ DOI:10.1016/j.asoc.2020.106839] 21. T. F. Moraes, L. Lovisolo, and L. F. C. Monteiro, "Fault location in distribution systems from analysis of the energy of sequence component waveforms," IET Generation, Transmission & Distribution, vol. 12, no. 9, pp. 1951-1960, May 2018, doi: 10.1049/iet-gtd.2017.0693. [ DOI:10.1049/iet-gtd.2017.0693] 22. E. Casagrande, W. L. Woon, H. H. Zeineldin, and N. H. Kan'an, "Data mining approach to fault detection for isolated inverter‐based microgrids," IET Generation, Transmission & Distribution, vol. 7, no. 7, pp. 745-754, Jul. 2013, doi: 10.1049/iet-gtd.2012.0518. [ DOI:10.1049/iet-gtd.2012.0518] 23. "VII. Mathematical contributions to the theory of evolution.-III. Regression, heredity, and panmixia," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 187, pp. 253-318, Dec. 1896, doi: 10.1098/rsta.1896.0007. [ DOI:10.1098/rsta.1896.0007] 24. J. Rogel-Salazar, Data Science and Analytics with Python Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, Illustrate. CRC Press, 2017.
|
|
Barkhi M, Pourhossein J, Hosseini S A. Adaptive protection in microgrid using KNN based on fault current symmetric components. ieijqp 2025; 14 (1) :39-54 URL: http://ieijqp.ir/article-1-1027-en.html
|