[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 2 (8-2025) ::
ieijqp 2025, 14(2): 0-0 Back to browse issues page
Stability Improvement of LCL-Based Fuel Cell Power Quality Enhancement System Utilizing Phase Compensation of Current Regulator
Majid Hosseinpour *1 , Rasoul Akbari1 , Mahdi Shahparasti2
1- University of Mohaghegh Ardabili
2- University of Vassa
Abstract:   (83 Views)

Grid-connected inverters connect distributed generation and renewable energy sources to the grid. Various filters, including the LCL filter, are utilized to increase the quality of grid-injected power. In addition to the inherent resonance of the LCL filter, the weak network with variable network impedance leads to the instability of the power transmission system. This paper aims to improve the injection power quality of the LCL filter-based grid-connected fuel cell with control based on the grid current feedback and capacitor current active damping. Although active damping can theoretically guarantee the grid-connected passive inverter behavior, the system performance is sensitive to both the current controller phase delay and the fluctuations of the filter parameters. To control these two factors, a suitable phase delay compensator has been proposed to enhance the passive behavior. In this paper, the LCL filter-based grid-connected fuel cell power conditioning system with control based on the grid current feedback and capacitor current active damping has been studied, and the passive and stable performance of this system has been evaluated considering the effect of the current regulator phase delay. The process of systematic design of the control system parameters has been described with necessary details and the passive performance of the grid-connected system has been evaluated. The simulation results of the grid-connected fuel cell power optimization system indicate the current injection with very high quality and the passive behavior of the system under changes in the impedance of the weak network.

Keywords: Grid-connected inverter, Fuel cell, Active damping, Phase compensator
     
Type of Study: Research |
Received: 2024/10/3 | Accepted: 2025/08/8 | Published: 2025/08/10
References
1. حسین‌پور مجید، ثابت فر تورج. سیستم بهساز توان فتوولتاییک متصل به شبکه با فیلتر LCL مبتنی بر استراتژی کنترل فیدبک جریان سمت اینورتر و جریان سمت شبکه. نشریه کیفیت و بهره‌وری صنعت برق ایران. ۱۴۰۲; ۱۲ (۲): ۳۹-۵۶.
2. Akhavan, A., Mohammadi, H.R., Vasquez, J.C. and Guerrero, J.M., 2020. Passivity-based design of plug-and-play current-controlled grid-connected inverters. IEEE Transactions on Power Electronics, 35(2), pp.2135-2150. [DOI:10.1109/TPEL.2019.2920843]
3. Ali, R., Heydari‐doostabad, H., Sajedi, S. and O'Donnell, T., 2024. Improved design of passive damping for single phase grid‐connected LCL filtered inverter considering impedance stability. IET Power Electronics, 17(4), pp.511-523. [DOI:10.1049/pel2.12666]
4. Awal, M.A., Della Flora, L. and Husain, I., 2022. Observer based generalized active damping for voltage source converters with LCL filters. IEEE Transactions on Power Electronics, 37(1), pp.125-136. [DOI:10.1109/TPEL.2021.3093504]
5. Awal, M.A., Yu, H., Husain, I., Yu, W. and Lukic, S.M., 2020. Selective harmonic current rejection for virtual oscillator controlled grid-forming voltage source converters. IEEE Transactions on Power Electronics, 35(8), pp.8805-8818. [DOI:10.1109/TPEL.2020.2965880]
6. Awal, M.A., Yu, W. and Husain, I., 2020. Passivity-based predictive-resonant current control for resonance damping in LCL-equipped VSCs. IEEE Transactions on Industry Applications, 56(2), pp.1702-1713. [DOI:10.1109/TIA.2019.2959594]
7. Awal, M.A., Yu, H., Della Flora, L., Yu, W., Lukic, S. and Husain, I., 2019, September. Observer based admittance shaping for resonance damping in voltage source converters with LCL filter. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 4455-4462). IEEE. [DOI:10.1109/ECCE.2019.8913194]
8. Awal, M.A., Yu, W. and Husain, I., 2019. Passivity-based predictive-resonant current control for resonance damping in LCL-equipped VSCs. IEEE Transactions on Industry Applications, 56(2), pp.1702-1713. [DOI:10.1109/TIA.2019.2959594]
9. Bai, H., Wang, X. and Blaabjerg, F., 2017. Passivity enhancement in renewable energy source based power plant with paralleled grid-connected VSIs. IEEE Transactions on Industry Applications, 53(4), pp.3793-3802. [DOI:10.1109/TIA.2017.2685363]
10. Ben Hamad, K., Luta, D.N. and Raji, A.K., 2021. A grid-tied fuel cell multilevel inverter with low harmonic distortions. Energies, 14(3), p.688. [DOI:10.3390/en14030688]
11. Chen, W., Zhang, Y., Tu, Y., Guan, Y., Shen, K. and Liu, J., 2023. Unified active damping strategy based on generalized virtual impedance in LCL-type grid-connected inverter. IEEE Transactions on Industrial Electronics, 70(8), pp.8129-8139. [DOI:10.1109/TIE.2022.3232647]
12. Elkayam, M. and Kuperman, A., 2019. Optimized design of multiresonant AC current regulators for single-phase grid-connected photovoltaic inverters. IEEE Journal of Photovoltaics, 9(6), pp.1815-1818. [DOI:10.1109/JPHOTOV.2019.2937386]
13. Fang, T., Shen, S., Zhang, L., Jin, Y. and Huang, C., 2021. Capacitor current feedback with phase-lead compensator to eliminate resonant frequency forbidden region for LCL-type grid-connected inverter in weak grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(5), pp.5581-5596. [DOI:10.1109/JESTPE.2021.3059024]
14. Hosseinpour, M., Sabetfar, T. and Shahparasti, M., 2024. Grid‐tied PEMFC power conditioning system based on capacitor voltage thorough feedback procedure in a weak and harmonics‐polluted network. Energy Science & Engineering, 12(1), pp.149-167. [DOI:10.1002/ese3.1624]
15. Hosseinpour, M., Sabetfar, T., Dejamkhooy, A. and Shahparasti, M., 2023. Design and control of LCL-type grid-tied PV power conditioning system based on inverter and grid side currents double feedback. International Journal of Modelling and Simulation, pp.1-21. [DOI:10.1080/02286203.2023.2204319]
16. Hosseinpour, M., Kholousi, A. and Poulad, A., 2022. A robust controller design procedure for LCL‐type grid‐tied proton exchange membrane fuel cell system in harmonics‐polluted network. Energy Science & Engineering, 10(10), pp.3798-3818. [DOI:10.1002/ese3.1250]
17. Hosseinpour, M., Asad, M. and Rasekh, N., 2021. A step-by-step design procedure of a robust control design for grid-connected inverter by LCL filter in a weak and harmonically distorted grid. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, pp.843-859. [DOI:10.1007/s40998-021-00414-z]
18. Huang, M., Wang, X., Loh, P.C. and Blaabjerg, F., 2015. LLCL-filtered grid converter with improved stability and robustness. IEEE Transactions on Power Electronics, 31(5), pp.3958-3967. [DOI:10.1109/TPEL.2015.2467185]
19. Li, M., Zhang, X., Guo, Z., Wang, J., Wang, Y., Li, F. and Zhao, W., 2020. The control strategy for the grid-connected inverter through impedance reshaping in q-axis and its stability analysis under a weak grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), pp.3229-3242. [DOI:10.1109/JESTPE.2020.3024863]
20. Lin, Z., Ruan, X., Zhang, H. and Wu, L., 2023. A hybrid-frame control based impedance shaping method to extend the effective damping frequency range of the three-phase adaptive active damper. IEEE Transactions on Industrial Electronics, 70(1), pp.509-521. [DOI:10.1109/TIE.2022.3153802]
21. Liu, L., Xu, J., Ye, J., Zheng, Z. and Shen, A., 2024. Controller parameter optimization of LCL-type grid-connected inverters for passivity margin enhancement. International Journal of Electrical Power & Energy Systems, 159, p.110046. [DOI:10.1016/j.ijepes.2024.110046]
22. Liu, T., Liu, J., Liu, Z. and Liu, Z., 2020. A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters. IEEE Transactions on Power Electronics, 35(1), pp.247-262. [DOI:10.1109/TPEL.2019.2911163]
23. Qasem, N.A. and Abdulrahman, G.A., 2024. A Recent Comprehensive Review of Fuel Cells: History, Types, and Applications. International Journal of Energy Research, 2024(1), p.7271748. [DOI:10.1155/2024/7271748]
24. Rasekh, N. and Hosseinpour, M., 2020. Adequate tuning of LCL filter for robust performance of converter side current feedback control of grid connected modified-Y-source inverter. International Journal of Industrial Electronics Control and Optimization, 3(3), pp.365-378.
25. Rasekh, N. and Hosseinpour, M., 2020. LCL filter design and robust converter side current feedback control for grid-connected Proton Exchange Membrane Fuel Cell system. International Journal of Hydrogen Energy, 45(23), pp.13055-13067. [DOI:10.1016/j.ijhydene.2020.02.227]
26. Rodriguez-Diaz, E., Freijedo, F.D., Guerrero, J.M., Marrero-Sosa, J.A. and Dujic, D., 2019. Input-admittance passivity compliance for grid-connected converters with an LCL filter. IEEE Transactions on Industrial Electronics, 66(2), pp.1089-1097. [DOI:10.1109/TIE.2018.2835374]
27. Rodriguez-Diaz, E., Freijedo, F.D., Vasquez, J.C. and Guerrero, J.M., 2019. Analysis and comparison of notch filter and capacitor voltage feedforward active damping techniques for LCL grid-connected converters. IEEE Transactions on Power Electronics, 34(4), pp.3958-3972. [DOI:10.1109/TPEL.2018.2856634]
28. Serrano-Delgado, J., Cobreces, S., Rizo, M. and Bueno, E.J., 2021. Low-order passivity-based robust current control design for grid-tied VSCs. IEEE Transactions on Power Electronics, 36(10), pp.11886-11899. [DOI:10.1109/TPEL.2021.3068057]
29. Sun, J., 2011. Impedance-based stability criterion for grid-connected inverters. IEEE Transactions on Power Electronics, 26(11), pp.3075-3078. [DOI:10.1109/TPEL.2011.2136439]
30. Tariq, A.H., Kazmi, S.A.A., Hassan, M., Ali, S.M. and Anwar, M., 2024. Analysis of fuel cell integration with hybrid microgrid systems for clean energy: A comparative review. International Journal of Hydrogen Energy, 52, pp.1005-1034. [DOI:10.1016/j.ijhydene.2023.07.238]
31. Wang, X. and Blaabjerg, F., 2019. Harmonic stability in power electronic-based power systems: Concept, modeling, and analysis. IEEE Transactions on Smart Grid, 10(3), pp.2858-2870. [DOI:10.1109/TSG.2018.2812712]
32. Wang, X., Blaabjerg, F. and Loh, P.C., 2017. Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filters. IEEE Transactions on Power Electronics, 32(11), pp.8922-8935. [DOI:10.1109/TPEL.2017.2651948]
33. Wu, H. and Wang, X., 2020. Virtual-flux-based passivation of current control for grid-connected VSCs. IEEE Transactions on Power Electronics, 35(12), pp.12673-12677. [DOI:10.1109/TPEL.2020.2997876]
34. Xie, C., Li, K., Zou, J. and Guerrero, J.M., 2020. Passivity-based stabilization of LCL-type grid-connected inverters via a general admittance model. IEEE Transactions on Power Electronics, 35(6), pp.6636-6648. [DOI:10.1109/TPEL.2019.2955861]
35. Yao, W., Yang, Y., Xu, Y., Blaabjerg, F., Liu, S. and Wilson, G., 2019. Phase reshaping via all-pass filters for robust LCL-filter active damping. IEEE Transactions on Power Electronics, 35(3), pp.3114-3126. [DOI:10.1109/TPEL.2019.2927272]
36. Yao, W., Yang, Y., Zhang, X., Blaabjerg, F. and Loh, P.C., 2017. Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Transactions on Power Electronics, 32(3), pp.2360-2375. [DOI:10.1109/TPEL.2016.2565598]
37. Yang, Z., Shah, C., Chen, T., Teichrib, J. and De Doncker, R.W., 2021. Virtual damping control design of three-phase grid-tied PV inverters for passivity enhancement. IEEE Transactions on Power Electronics, 36(6), pp.6251-6264. [DOI:10.1109/TPEL.2020.3035417]
38. Yepes, A.G., Vidal, A., Malvar, J., Lopez, O. and Doval-Gandoy, J., 2013. Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines. IEEE Transactions on Power Electronics, 29(6), pp.3041-3054. [DOI:10.1109/TPEL.2013.2276059]
39. Yuan, X., Y. Liu, and R. Bucknall, "A Novel Design of a Solid Oxide Fuel Cell-Based Combined Cooling, Heat and Power Residential System in the UK", IEEE Transactions on Industry Applications, Vol. 57, No. 1, pp. 805-813, 2020. [DOI:10.1109/TIA.2020.3034073]
40. Yu, H., Awal, M.A., Tu, H., Du, Y., Lukic, S. and Husain, I., 2019, September. Passivity-oriented discrete-time voltage controller design for grid-forming inverters. In 2019 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 469-475). IEEE. [DOI:10.1109/ECCE.2019.8912988]
41. Zhang, Z., Wu, W., Shuai, Z., Wang, X., Luo, A., Chung, H.S.H. and Blaabjerg, F., 2019. Principle and robust impedance-based design of grid-tied inverter with LLCL-filter under wide variation of grid-reactance. IEEE Transactions on Power Electronics, 34(5), pp.4362-4374. [DOI:10.1109/TPEL.2018.2864775]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinpour M, Akbari R, Shahparasti M. Stability Improvement of LCL-Based Fuel Cell Power Quality Enhancement System Utilizing Phase Compensation of Current Regulator. ieijqp 2025; 14 (2)
URL: http://ieijqp.ir/article-1-1013-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 2 (8-2025) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 38 queries by YEKTAWEB 4714