[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
IEEE
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 13، شماره 2 - ( 5-1403 ) ::
جلد 13 شماره 2 صفحات 0-0 برگشت به فهرست نسخه ها
بهبود کنترل فرکانس در سیستم‌های قدرت با استفاده از ترکیب بازخورد حالت و بهینه‌سازی ازدحام ذرات مبتنی بر سیستم استنتاج فازی
محمد طلوع عسکری*1 ، یوسفعلی جوانی قادیکلائی1 ، میثم امیراحمدی1 ، مجید بابایی نیک1
1- دانشگاه آزاد اسلامی واحد سمنان
چکیده:   (491 مشاهده)
این مقاله به بررسی مدیریت بارهای فرکانسی در سیستم‌های قدرت پرداخته و یک روش جدید برای طراحی کنترل‌کننده بار فرکانس ارائه می‌دهد. در این روش، از ترکیب بازخورد حالت و الگوریتم بهینه‌سازی ازدحام ذرات (PSO) بهره‌گیری شده است. سیستم استنتاج فازی نیز برای ادغام توابع هزینه مختلف و بهبود دقت بهینه‌سازی به کار رفته است. شبیه‌سازی‌های انجام‌شده بر روی یک سیستم قدرت دو ناحیه‌ای با محدودیت‌های گاورنر غیرخطی نشان می‌دهد که این روش می‌تواند انحرافات فرکانسی را به طور مؤثر کاهش داده و پایداری سیستم را افزایش دهد. نتایج حاکی از بهبود چشمگیر عملکرد دینامیکی سیستم قدرت می‌باشد. این تحقیق از یک روش ترکیبی بازخورد حالت و الگوریتم PSO استفاده کرده است. ابتدا، الگوریتم PSO مقادیر تابع هدف چندگانه را برای هر راه‌حل اختصاص می‌دهد. سپس، این مقادیر به سیستم استنتاج فازی وارد شده و مقدار شایستگی نهایی برای هر راه‌حل محاسبه می‌شود. این رویکرد بهینه‌سازی چند هدفه را به یک هدف تک‌هدفه تبدیل می‌کند و از توابع عضویت فازی و قوانین استنتاج برای این کار بهره می‌برد. شبیه‌سازی‌های انجام‌شده نشان می‌دهد که روش پیشنهادی می‌تواند به طور مؤثر انحرافات فرکانسی را کاهش داده و پایداری سیستم قدرت را بهبود بخشد. نتایج شبیه‌سازی برای سیستم دو ناحیه‌ای نشان می‌دهد که کنترل‌کننده‌های توسعه‌یافته توانسته‌اند عملکرد بهتری نسبت به کنترل‌کننده‌های PI مرجع داشته باشند و انعطاف‌پذیری بالایی در برابر تغییرات پارامترهای سیستم از خود نشان دهند.
 
واژه‌های کلیدی: طراحی کنترل‌کننده مجازی، کنترل فرکانس، کنترل‌کننده بازخورد حالت، الگوریتم بهینه‌سازی.
     
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1403/2/30 | پذیرش: 1403/7/15 | انتشار: 1404/1/17
فهرست منابع
1. مراجع [1] P. Kundur, Power System Stability and Control: McGraw-Hill, 1994.
2. [2] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Load Frequency Control Strategies: A State-of-the-Art Survey for the Researcher," Energy Conversion and Management, Vol. 50, 2009, pp. 344-353. [DOI:10.1016/j.enconman.2008.09.014]
3. [3] Y. H. Moon, H. S. Ryu, J. G. Lee, K. B. Song, and M. C. Shin, "Extended Integral Control for Load Frequency Control with the Consideration of Generation-Rate Constraints," International Journal of Electrical Power & Energy Systems, Vol. 24, 2002, pp. 263-269. [DOI:10.1016/S0142-0615(01)00036-9]
4. [4] J. Talaq and F. Al-Basri, "Adaptive fuzzy gain scheduling for load frequency control," IEEE Trans. on Power and Systems, Vol. 14, 1999, pp. 145-150. [DOI:10.1109/59.744505]
5. [5] M. Azzam, "Robust Automatic Generation Control," Energy Conversion and Management, Vol. 40, 1999, pp. 1413-1421. [DOI:10.1016/S0196-8904(99)00040-0]
6. [6] Z. Q. Wang and M. Sznaier, "Robust control design for load frequency control using µ-synthesis," in Southcon/94, Conference Record, Orlando, FL, USA, 1994, pp. 186-190. [DOI:10.1109/SOUTHC.1994.498097]
7. [7] A. Khodabakhshian and M. Edrisi, "A New Robust PID Load Frequency Controller," Control Engineering Practice, Vol. 16, 2008, pp. 1069-1080. [DOI:10.1016/j.conengprac.2007.12.003]
8. [8] K. Sabahi, M. A. Nekoui, M. Teshnehlab, M. Aliyari, and M. Mansouri, "Load Frequency Control in Interconnected Power System Using Modified Dynamic Neural Networks," Control & Automation, Vol. 1, 2007. [DOI:10.1109/MED.2007.4433651]
9. [9] A. Y. Abdelaziz, M. A. L. Badr, and A. H. Younes, "Artificial Neural Network for Load Modeling of an Egyptian Primary Distribution System," Electric Power Components and Systems, Vol. 34, 2006, pp. 1099-1119. [DOI:10.1080/15325000600630343]
10. [10] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Multi-Stage Fuzzy PID Power System Automatic Generation Controller in Deregulated Environments," Energy Conversion and Management, Vol. 47, 2006, pp. 2829-2845. [DOI:10.1016/j.enconman.2006.03.031]
11. [11] S. Pothiya, Issarachai Ngamroo," Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units", Energy Conversion and Management, Vol.49, 2008, pp. 2833-2838. [DOI:10.1016/j.enconman.2008.03.010]
12. [12] R. Hemmati, M. S. Boroujeni, H. Delafkar, A. S. Boroujeni, "PID Controller Adjustment using PSO for Multi Area Load Frequency Control " , Australian Journal of Basic and Applied Sciences,Vol. 5, 2011, pp. 295-302.
13. [13] S.A. Taher, R. Hematti, A. Abdolalipour , H. Tabe ," Optimal Decentralized Load Frequency Control Using HPSO Algorithms in Deregulated Power Systems",American Journal of Applied Sciences,Vol. 5 , 2008, pp.1167-1174. [DOI:10.3844/ajassp.2008.1167.1174]
14. [14] R.V. Rao, V.J. Savsani, D.P. Vakharia, "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Design, Vol. 43, No. 3, pp. 303-315, 2011. [DOI:10.1016/j.cad.2010.12.015]
15. [15] Hassan, M.A.M.; Worku, M.Y.; Abido, M.A. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load. Energies 2018, 11, 1109 [DOI:10.3390/en11051109]
16. [16] Lidula, A.N.W.; Rajapakse, A. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186-202. [DOI:10.1016/j.rser.2010.09.041]
17. [17] Shahidehpour, M.; Khodayar, M. Cutting Campus Energy Costs with Hierarchical Control: The Economical and Reliable Operation of a Microgrid. IEEE Electrif. Mag. 2013, 1, 40-56. [DOI:10.1109/MELE.2013.2273994]
18. [18] Che, L.; Shahidehpour, M. DC Microgrids: Economic Operation and Enhancement of Resilience by Hierarchical Control. IEEE Trans. Smart Grid 2014, 5, 2517-2526. [DOI:10.1109/TSG.2014.2344024]
19. [19] Hassan, M.; Aleem, S.H.E.A.; Ali, S.G.; Abdelaziz, A.Y.; Ribeiro, P.F.; Ali, Z.M. Robust Energy Management and Economic Analysis of Microgrids Considering Different Battery Characteristics. IEEE Access 2020, 8, 54751-54775. [DOI:10.1109/ACCESS.2020.2981697]
20. [20] Sidong Xian, Xu Feng, "Meerkat optimization algorithm: A new meta-heuristic optimization algorithm for solving constrained engineering problems," Expert Systems with Applications, Volume 231, 120482, 2023. [DOI:10.1016/j.eswa.2023.120482]
21. [21] Verma, P.; Gupta, P. Proactive stabilization of grid faults in DFIG based wind farm using bridge type fault current limiter based on NMPC. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1-20. [DOI:10.1080/15567036.2019.1673508]
22. [22] Mohssine, C.; Nasser, T.; Essadki, A. Contribution of Variable Speed Wind Turbine Generator based on DFIG using ADRC and RST Controllers to Frequency Regulation. Int. J. Renew. Energy Res. (IJRER) 2021, 11, 320-331.
23. [23] Ribó-Pérez, D.; Bastida-Molina, P.; Gómez-Navarro, T.; Hurtado-Pérez, E. Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids. Renew. Energy 2020, 157, 874-887. [DOI:10.1016/j.renene.2020.05.095]
24. [24] Sadat, S.A.; Faraji, J.; Babaei, M.; Ketabi, A. Techno-economic comparative study of hybrid microgrids in eight climate zones of Iran. Energy Sci. Eng. 2020, 8, 3004-3026. [DOI:10.1002/ese3.720]
25. [25] Borghei, M.; Ghassemi, M. Optimal planning of microgrids for resilient distribution networks. Int. J. Electr. Power Energy Syst. 2021, 128, 106682. [DOI:10.1016/j.ijepes.2020.106682]
26. [26] Parol, M.; Wójtowicz, T.; Księżyk, K.; Wenge, C.; Balischewski, S.; Arendarski, B. Optimum management of power and energy in low voltage microgrids using evolutionary algorithms and energy storage. Int. J. Electr. Power Energy Syst. 2020, 119, 105886. [DOI:10.1016/j.ijepes.2020.105886]
27. [27] Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed Control and Communication Strategies in Networked Microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586-2633. [DOI:10.1109/COMST.2020.3023963]
28. [28] Zhou, B.; Zou, J.; Chung, C.Y.; Wang, H.; Liu, N.; Voropai, N.; Xu, D. Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies. J. Mod. Power Syst. Clean Energy 2021, 9, 463-476. [DOI:10.35833/MPCE.2019.000237]
29. [29] Mohamed, N.; Aymen, F.; Ali, Z.; Zobaa, A.; Aleem, S.A. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability 2021, 13, 7351. [DOI:10.3390/su13137351]
30. [30] Bevrani, H.; Habibi, F.; Babahajyani, P.; Watanabe, M.; Mitani, Y. Intelligent Frequency Control in an AC Micro grid:Online PSO-Based Fuzzy Tuning Approach. IEEE Trans. Smart Grid 2012, 3, 1935-1944. [DOI:10.1109/TSG.2012.2196806]
31. [31] Li, X.; Song, Y.J.; Han, S.B. Frequency control in micro grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 2018, 180, 468-475. [DOI:10.1016/j.jpowsour.2008.01.092]
32. [32] Mahmoudi, M.; Jafari, H.; Jafari, R. Frequency control of Micro-grid Using State Feedback with Integral Control. In Proceedings of the 20th Conference on Electrical Power Distribution Networks Conference (EPDC), Zahedan, Iran, 28-29 April 2015. [DOI:10.1109/EPDC.2015.7330464]
33. [33] Mauricio, J.M.; Marano, A.; Gómez-Expósito, A.; Ramos, J.L. Frequency Regulation Contribution Through Variable-Speed Wind Energy Conversion Systems. IEEE Trans. Power Syst. 2009, 24, 173-180. [DOI:10.1109/TPWRS.2008.2009398]
34. [34] Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. IEEE Trans. Power Syst. 2006, 21, 433-434. [DOI:10.1109/TPWRS.2005.861956]
35. [35] Ahmadi, R.; Sheikholeslami, A.; Nabavi Niaki, A.; Ranjbar, A. Dynamic participation of doubly fed induction generator in multi-area load frequecy control. Int. Trans. Electr. Energy Syst. 2015, 25, 1130-1147. [DOI:10.1002/etep.1891]
36. [36] Alayi, R.; Zishan, F.; Mohkam, M.; Hoseinzadeh, S.; Memon, S.; Garcia, D. A Sustainable Energy Distribution Configuration for Microgrids Integrated to the National Grid Using Back-to-Back Converters in a Renewable Power System. Electronics 2021, 10, 1826. [DOI:10.3390/electronics10151826]
37. [37] Li, H.; Wang, X.; Xiao, J. Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems. Energies 2018, 11, 1686. [DOI:10.3390/en11071686]
38. [38] Stadler, M.; Siddiqui, A.; Marnay, C.; Aki, H.; Lai, J. Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings. Eur. Trans. Electr. Power 2011, 21, 1291-1309. [DOI:10.1002/etep.418]
39. مراجع
40. [1] P. Kundur, Power System Stability and Control: McGraw-Hill, 1994.
41. [2] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Load Frequency Control Strategies: A State-of-the-Art Survey for the Researcher," Energy Conversion and Management, Vol. 50, 2009, pp. 344-353. [DOI:10.1016/j.enconman.2008.09.014]
42. [3] Y. H. Moon, H. S. Ryu, J. G. Lee, K. B. Song, and M. C. Shin, "Extended Integral Control for Load Frequency Control with the Consideration of Generation-Rate Constraints," International Journal of Electrical Power & Energy Systems, Vol. 24, 2002, pp. 263-269. [DOI:10.1016/S0142-0615(01)00036-9]
43. [4] J. Talaq and F. Al-Basri, "Adaptive fuzzy gain scheduling for load frequency control," IEEE Trans. on Power and Systems, Vol. 14, 1999, pp. 145-150. [DOI:10.1109/59.744505]
44. [5] M. Azzam, "Robust Automatic Generation Control," Energy Conversion and Management, Vol. 40, 1999, pp. 1413-1421. [DOI:10.1016/S0196-8904(99)00040-0]
45. [6] Z. Q. Wang and M. Sznaier, "Robust control design for load frequency control using µ-synthesis," in Southcon/94, Conference Record, Orlando, FL, USA, 1994, pp. 186-190. [DOI:10.1109/SOUTHC.1994.498097]
46. [7] A. Khodabakhshian and M. Edrisi, "A New Robust PID Load Frequency Controller," Control Engineering Practice, Vol. 16, 2008, pp. 1069-1080. [DOI:10.1016/j.conengprac.2007.12.003]
47. [8] K. Sabahi, M. A. Nekoui, M. Teshnehlab, M. Aliyari, and M. Mansouri, "Load Frequency Control in Interconnected Power System Using Modified Dynamic Neural Networks," Control & Automation, Vol. 1, 2007. [DOI:10.1109/MED.2007.4433651]
48. [9] A. Y. Abdelaziz, M. A. L. Badr, and A. H. Younes, "Artificial Neural Network for Load Modeling of an Egyptian Primary Distribution System," Electric Power Components and Systems, Vol. 34, 2006, pp. 1099-1119. [DOI:10.1080/15325000600630343]
49. [10] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Multi-Stage Fuzzy PID Power System Automatic Generation Controller in Deregulated Environments," Energy Conversion and Management, Vol. 47, 2006, pp. 2829-2845. [DOI:10.1016/j.enconman.2006.03.031]
50. [11] S. Pothiya, Issarachai Ngamroo," Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units", Energy Conversion and Management, Vol.49, 2008, pp. 2833-2838. [DOI:10.1016/j.enconman.2008.03.010]
51. [12] R. Hemmati, M. S. Boroujeni, H. Delafkar, A. S. Boroujeni, "PID Controller Adjustment using PSO for Multi Area Load Frequency Control " , Australian Journal of Basic and Applied Sciences,Vol. 5, 2011, pp. 295-302.
52. [13] S.A. Taher, R. Hematti, A. Abdolalipour , H. Tabe ," Optimal Decentralized Load Frequency Control Using HPSO Algorithms in Deregulated Power Systems",American Journal of Applied Sciences,Vol. 5 , 2008, pp.1167-1174. [DOI:10.3844/ajassp.2008.1167.1174]
53. [14] R.V. Rao, V.J. Savsani, D.P. Vakharia, "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Design, Vol. 43, No. 3, pp. 303-315, 2011. [DOI:10.1016/j.cad.2010.12.015]
54. [15] Hassan, M.A.M.; Worku, M.Y.; Abido, M.A. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load. Energies 2018, 11, 1109 [DOI:10.3390/en11051109]
55. [16] Lidula, A.N.W.; Rajapakse, A. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186-202. [DOI:10.1016/j.rser.2010.09.041]
56. [17] Shahidehpour, M.; Khodayar, M. Cutting Campus Energy Costs with Hierarchical Control: The Economical and Reliable Operation of a Microgrid. IEEE Electrif. Mag. 2013, 1, 40-56. [DOI:10.1109/MELE.2013.2273994]
57. [18] Che, L.; Shahidehpour, M. DC Microgrids: Economic Operation and Enhancement of Resilience by Hierarchical Control. IEEE Trans. Smart Grid 2014, 5, 2517-2526. [DOI:10.1109/TSG.2014.2344024]
58. [19] Hassan, M.; Aleem, S.H.E.A.; Ali, S.G.; Abdelaziz, A.Y.; Ribeiro, P.F.; Ali, Z.M. Robust Energy Management and Economic Analysis of Microgrids Considering Different Battery Characteristics. IEEE Access 2020, 8, 54751-54775. [DOI:10.1109/ACCESS.2020.2981697]
59. [20] Sidong Xian, Xu Feng, "Meerkat optimization algorithm: A new meta-heuristic optimization algorithm for solving constrained engineering problems," Expert Systems with Applications, Volume 231, 120482, 2023. [DOI:10.1016/j.eswa.2023.120482]
60. [21] Verma, P.; Gupta, P. Proactive stabilization of grid faults in DFIG based wind farm using bridge type fault current limiter based on NMPC. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1-20. [DOI:10.1080/15567036.2019.1673508]
61. [22] Mohssine, C.; Nasser, T.; Essadki, A. Contribution of Variable Speed Wind Turbine Generator based on DFIG using ADRC and RST Controllers to Frequency Regulation. Int. J. Renew. Energy Res. (IJRER) 2021, 11, 320-331.
62. [23] Ribó-Pérez, D.; Bastida-Molina, P.; Gómez-Navarro, T.; Hurtado-Pérez, E. Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids. Renew. Energy 2020, 157, 874-887. [DOI:10.1016/j.renene.2020.05.095]
63. [24] Sadat, S.A.; Faraji, J.; Babaei, M.; Ketabi, A. Techno-economic comparative study of hybrid microgrids in eight climate zones of Iran. Energy Sci. Eng. 2020, 8, 3004-3026. [DOI:10.1002/ese3.720]
64. [25] Borghei, M.; Ghassemi, M. Optimal planning of microgrids for resilient distribution networks. Int. J. Electr. Power Energy Syst. 2021, 128, 106682. [DOI:10.1016/j.ijepes.2020.106682]
65. [26] Parol, M.; Wójtowicz, T.; Księżyk, K.; Wenge, C.; Balischewski, S.; Arendarski, B. Optimum management of power and energy in low voltage microgrids using evolutionary algorithms and energy storage. Int. J. Electr. Power Energy Syst. 2020, 119, 105886. [DOI:10.1016/j.ijepes.2020.105886]
66. [27] Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed Control and Communication Strategies in Networked Microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586-2633. [DOI:10.1109/COMST.2020.3023963]
67. [28] Zhou, B.; Zou, J.; Chung, C.Y.; Wang, H.; Liu, N.; Voropai, N.; Xu, D. Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies. J. Mod. Power Syst. Clean Energy 2021, 9, 463-476. [DOI:10.35833/MPCE.2019.000237]
68. [29] Mohamed, N.; Aymen, F.; Ali, Z.; Zobaa, A.; Aleem, S.A. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability 2021, 13, 7351. [DOI:10.3390/su13137351]
69. [30] Bevrani, H.; Habibi, F.; Babahajyani, P.; Watanabe, M.; Mitani, Y. Intelligent Frequency Control in an AC Micro grid:Online PSO-Based Fuzzy Tuning Approach. IEEE Trans. Smart Grid 2012, 3, 1935-1944. [DOI:10.1109/TSG.2012.2196806]
70. [31] Li, X.; Song, Y.J.; Han, S.B. Frequency control in micro grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 2018, 180, 468-475. [DOI:10.1016/j.jpowsour.2008.01.092]
71. [32] Mahmoudi, M.; Jafari, H.; Jafari, R. Frequency control of Micro-grid Using State Feedback with Integral Control. In Proceedings of the 20th Conference on Electrical Power Distribution Networks Conference (EPDC), Zahedan, Iran, 28-29 April 2015. [DOI:10.1109/EPDC.2015.7330464]
72. [33] Mauricio, J.M.; Marano, A.; Gómez-Expósito, A.; Ramos, J.L. Frequency Regulation Contribution Through Variable-Speed Wind Energy Conversion Systems. IEEE Trans. Power Syst. 2009, 24, 173-180. [DOI:10.1109/TPWRS.2008.2009398]
73. [34] Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. IEEE Trans. Power Syst. 2006, 21, 433-434. [DOI:10.1109/TPWRS.2005.861956]
74. [35] Ahmadi, R.; Sheikholeslami, A.; Nabavi Niaki, A.; Ranjbar, A. Dynamic participation of doubly fed induction generator in multi-area load frequecy control. Int. Trans. Electr. Energy Syst. 2015, 25, 1130-1147. [DOI:10.1002/etep.1891]
75. [36] Alayi, R.; Zishan, F.; Mohkam, M.; Hoseinzadeh, S.; Memon, S.; Garcia, D. A Sustainable Energy Distribution Configuration for Microgrids Integrated to the National Grid Using Back-to-Back Converters in a Renewable Power System. Electronics 2021, 10, 1826. [DOI:10.3390/electronics10151826]
76. [37] Li, H.; Wang, X.; Xiao, J. Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems. Energies 2018, 11, 1686. [DOI:10.3390/en11071686]
77. [38] Stadler, M.; Siddiqui, A.; Marnay, C.; Aki, H.; Lai, J. Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings. Eur. Trans. Electr. Power 2011, 21, 1291-1309. [DOI:10.1002/etep.418]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tolou Askari M, Javanighadeikolaei Y, Amirahmadi M, Babaeinik M. Enhancing Stability of Microgrid with a Novel Multi-Objective Fuzzy Controller for Integration of High Penetration Renewable Energies. ieijqp 2024; 13 (2)
URL: http://ieijqp.ir/article-1-997-fa.html

طلوع عسکری محمد، جوانی قادیکلائی یوسفعلی، امیراحمدی میثم، بابایی نیک مجید. بهبود کنترل فرکانس در سیستم‌های قدرت با استفاده از ترکیب بازخورد حالت و بهینه‌سازی ازدحام ذرات مبتنی بر سیستم استنتاج فازی. نشریه کیفیت و بهره وری صنعت برق ایران. 1403; 13 (2)

URL: http://ieijqp.ir/article-1-997-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 2 - ( 5-1403 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4712