[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 12، شماره 2 - ( 5-1402 ) ::
جلد 12 شماره 2 صفحات 11-1 برگشت به فهرست نسخه ها
طراحی شبکه باقی مانده عصبی عمیق چند سطحی برای پیش بینی کوتاه مدت بارهای الکتریکی در سیستم های قدرت
مهتاب گنجوری1، مزدا معطری* 1، احمد فروزان تبار1، محمد آزادی2
1- دانشکده مهندسی برق، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
2- مرکز تحقیقات مکاترونیک و هوش مصنوعی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران
چکیده:   (228 مشاهده)

برای برقراری تعادل تولید - مصرف، طراحی یک روش که اطلاعات اولیه را برای بار مصرفی در ساعات آتی با سطح دقت و قابلیت اطمینان مطلوبی ضروری می‌باشد. مسئله‌ی پیش‌بینی بار با ظهور مفاهیم جدید در شبکه‌های برق و تجدید ساختار سیستم‌های قدرت روز به روز پیچیده‌تر می‌شود. این مقاله یک شبکه باقی‌مانده عصبی را برای پیش بینی با دقت بالای بارهای الکتریکی پیشنهاد می‌کند. در شبکه‌ی طراحی شده با ترکیب دو شبکه‌ی باقی‌مانده عمیق قدرتمند توانایی یادگیری ارتقا یافته و همچنین از مشکلاتی همچون بیش برازش و­کاهش/افزایش گرادیان جلوگیری شده است. همچنین، برای یادگیری کامل مشخصات زمانی و مکانی، شبکه‌ی عصبی کانولوشنی (CNN) و واحد بازگشتی حافظه‌دار (GRU) ترکیب شده و در ساختار چندسطحی باقی‌مانده ادغام شده است. تحلیل‌ها فصلی و تحقیق بر روی چندین مورد مختلف با استفاده از داده‌های بار مصرفی واقعی در شهر شیراز، ایران موثر بودن روش را تایید می‌کند و برتری روش پیشنهاد از طریق مقایسه با روش‌های پیشین نشان داده شده است.

شماره‌ی مقاله: 1
واژه‌های کلیدی: پیش‌بینی کوتاه مدت بار، شبکه‌ی عصبی باقی‌مانده عمیق چند سطحی، شبکه بازگشتی حافظه‌دار، شبکه‌ی عصبی کانولوشنی
متن کامل [PDF 1087 kb]   (83 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1401/4/20 | پذیرش: 1402/4/6 | انتشار: 1402/5/10
فهرست منابع
1. M. Afrasiabi, M. Mohammadi, M. Rastegar, and A. Kargarian, "Multi-agent microgrid energy management based on deep learning forecaster," Energy, vol. 186, p. 115873, 2019/11/01/ 2019. [DOI:10.1016/j.energy.2019.115873]
2. M. Afrasiabi, M. Mohammadi, M. Rastegar, and S. Afrasiabi, "Stochastic distributed microgrid energy management based on over-relaxed alternative direction method of multipliers," IET Renewable Power Generation, vol. 14, no. 14, pp. 2639-2648, 2020. [DOI:10.1049/iet-rpg.2019.1395]
3. H. Samet, S. Ketabipour, S. Afrasiabi, M. Afrasiabi, and M. Mohammadi, "Prediction of wind farm reactive power fast variations by adaptive one-dimensional convolutional neural network," Computers & Electrical Engineering, vol. 96, p. 107480, 2021/12/01/ 2021. [DOI:10.1016/j.compeleceng.2021.107480]
4. M. Afrasiabi, M. Mohammadi, M. Rastegar, and A. Kargarian, "Probabilistic deep neural network price forecasting based on residential load and wind speed predictions," IET Renewable Power Generation, vol. 13, no. 11, pp. 1840-1848, 2019. [DOI:10.1049/iet-rpg.2018.6257]
5. M. Afrasiabi, M. Mohammadi, M. Rastegar, L. Stankovic, S. Afrasiabi, and M. Khazaei, "Deep-Based Conditional Probability Density Function Forecasting of Residential Loads," IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3646-3657, 2020. [DOI:10.1109/TSG.2020.2972513]
6. L. Jian-Chang, N. Dong-Xiao, and J. Zheng-Yuan, "A study of short-term load forecasting based on ARIMA-ANN," in Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, vol. 5, pp. 3183-3187 vol.5.
7. H. Chen, Q. Wan, B. Zhang, F. Li, and Y. Wang, "Short-term load forecasting based on asymmetric ARCH models," in IEEE PES General Meeting, 2010, pp. 1-6. [DOI:10.1109/PES.2010.5590185]
8. H. Cui and X. Peng, "Short-Term City Electric Load Forecasting with Considering Temperature Effects: An Improved ARIMAX Model," Mathematical Problems in Engineering, vol. 2015, p. 589374, 2015/07/14 2015. [DOI:10.1155/2015/589374]
9. S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, "Designing a composite deep learning based differential protection scheme of power transformers," Applied Soft Computing, vol. 87, p. 105975, 2020/02/01/ 2020. [DOI:10.1016/j.asoc.2019.105975]
10. M. Afrasiabi, S. Afrasiabi, B. Parang, and M. Mohammadi, "Power transformers internal fault diagnosis based on deep convolutional neural networks," Journal of Intelligent & Fuzzy Systems, vol. 37, pp. 1165-1179, 2019. [DOI:10.3233/JIFS-182615]
11. C. Hong, C. A. Canizares, and A. Singh, "ANN-based short-term load forecasting in electricity markets," in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, vol. 2, pp. 411-415 vol.2.
12. A. Selakov, D. Cvijetinović, L. Milović, S. Mellon, and D. Bekut, "Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank," Applied Soft Computing, vol. 16, pp. 80-88, 2014/03/01/ 2014. [DOI:10.1016/j.asoc.2013.12.001]
13. P. Zhang, X. Wu, X. Wang, and S. Bi, "Short-term load forecasting based on big data technologies," CSEE Journal of Power and Energy Systems, vol. 1, no. 3, pp. 59-67, 2015. [DOI:10.17775/CSEEJPES.2015.00036]
14. C. Ying-Ying, P. P. K. Chan, and Q. Zhi-Wei, "Random forest based ensemble system for short term load forecasting," in 2012 International Conference on Machine Learning and Cybernetics, 2012, vol. 1, pp. 52-56.
15. M. El-Hendawi and Z. Wang, "An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting," Electric Power Systems Research, vol. 182, p. 106265, 2020/05/01/ 2020. [DOI:10.1016/j.epsr.2020.106265]
16. C. López, W. Zhong, and M. Zheng, "Short-term Electric Load Forecasting Based on Wavelet Neural Network, Particle Swarm Optimization and Ensemble Empirical Mode Decomposition," Energy Procedia, vol. 105, pp. 3677-3682, 2017/05/01/ 2017. [DOI:10.1016/j.egypro.2017.03.847]
17. Y. Liang, D. Niu, and W.-C. Hong, "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, vol. 166, pp. 653-663, 2019/01/01/ 2019. [DOI:10.1016/j.energy.2018.10.119]
18. R. K. Jagait, M. N. Fekri, K. Grolinger, and S. Mir, "Load Forecasting Under Concept Drift: Online Ensemble Learning With Recurrent Neural Network and ARIMA," IEEE Access, vol. 9, pp. 98992-99008, 2021. [DOI:10.1109/ACCESS.2021.3095420]
19. W. Dong, H. Sun, J. Tan, Z. Li, J. Zhang, and Y. Y. Zhao, "Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis," Energy Reports, vol. 7, pp. 7675-7692, 2021/11/01/ 2021. [DOI:10.1016/j.egyr.2021.11.021]
20. S. Afrasiabi, M. Mohammadi, M. Afrasiabi, and B. Parang, "Modulated Gabor filter based deep convolutional network for electrical motor bearing fault classification and diagnosis," IET Science, Measurement & Technology, vol. 15, no. 2, pp. 154-162, 2021. [DOI:10.1049/smt2.12017]
21. S. Afrasiabi, M. Afrasiabi, M. Mohammadi, and B. Parang, "Fault localisation and diagnosis in transmission networks based on robust deep Gabor convolutional neural network and PMU measurements," IET Generation, Transmission & Distribution, vol. 14, no. 26, pp. 6484- [DOI:10.1049/iet-gtd.2020.0856]
22. S. Afrasiabi, M. Afrasiabi, B. Parang, M. Mohammadi, S. Kahourzade, and A. Mahmoudi, "Two-Stage Deep Learning-based Wind Turbine Condition Monitoring Using SCADA Data," in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16-19 Dec. 2020 2020, pp. 1-6. [DOI:10.1109/PEDES49360.2020.9379393]
23. H. Samet, S. Ketabipoor, M. Afrasiabi, S. Afrasiabi, and M. Mohammadi, "Deep Learning Forecaster based Controller for SVC: Wind Farm Flicker Mitigation," IEEE Transactions on Industrial Informatics, pp. 1-1, 2020.
24. X. Kong, C. Li, F. Zheng, and C. Wang, "Improved Deep Belief Network for Short-Term Load Forecasting Considering Demand-Side Management," IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1531-1538, 2020. [DOI:10.1109/TPWRS.2019.2943972]
25. H. Chen, S. Wang, S. Wang, and Y. Li, "Day-ahead aggregated load forecasting based on two-terminal sparse coding and deep neural network fusion," Electric Power Systems Research, vol. 177, p. 105987, 2019/12/01/ 2019. [DOI:10.1016/j.epsr.2019.105987]
26. S. Afrasiabi, M. Afrasiabi, B. Parang, M. Mohammadi, S. Kahourzade, and A. Mahmoudi, "Two-Stage Deep Learning-based Wind Turbine Condition Monitoring Using SCADA Data," in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020, pp. 1-6. [DOI:10.1109/PEDES49360.2020.9379393]
27. S. Afrasiabi, M. Afrasiabi, B. Parang, M. Mohammadi, H. Samet, and T. Dragicevic, "Fast GRNN-Based Method for Distinguishing Inrush Currents in Power Transformers," IEEE Transactions on Industrial Electronics, pp. 1-1, 2021. [DOI:10.1109/TIE.2021.3109535]
28. S. Afrasiabi et al., "Detection and Localization of Transmission Line Faults based on a Hybrid Two-Stage Technique considering Wind Power Generation," in 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2021, pp. 1-5. [DOI:10.1109/EEEIC/ICPSEurope51590.2021.9584525]
29. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269. [DOI:10.1109/CVPR.2017.243]
30. K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, "Residual Networks of Residual Networks: Multilevel Residual Networks," IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 6, pp. 1303-1314, 2018. [DOI:10.1109/TCSVT.2017.2654543]
31. S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, "Integration of Accelerated Deep Neural Network Into Power Transformer Differential Protection," IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp. 865-876, 2020. [DOI:10.1109/TII.2019.2929744]
32. M. Afrasiabi, M. Mohammadi, M. Rastegar, and S. Afrasiabi, "Advanced Deep Learning Approach for Probabilistic Wind Speed Forecasting," IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 720-727, 2021. [DOI:10.1109/TII.2020.3004436]
33. S. Afrasiabi, M. Afrasiabi, M. A. Jarrahi, and M. Mohammadi, "Fault Location and Faulty Line Selection in Transmission Networks: Application of Improved Gated Recurrent Unit," IEEE Systems Journal, pp. 1-11, 2022. [DOI:10.1109/JSYST.2022.3172406]
34. I. R. M. Commission, "Energy Surplus Instruction 88, available in: www," IGMC. ir.
35. M. Afrasiabi, M. Mohammadi, M. Rastegar, and A. Kargarian, "Multi-agent microgrid energy management based on deep learning forecaster," Energy, vol. 186, p. 115873, 2019/11/01/ 2019. [DOI:10.1016/j.energy.2019.115873]
36. M. Afrasiabi, M. Mohammadi, M. Rastegar, and S. Afrasiabi, "Stochastic distributed microgrid energy management based on over-relaxed alternative direction method of multipliers," IET Renewable Power Generation, vol. 14, no. 14, pp. 2639-2648, 2020. [DOI:10.1049/iet-rpg.2019.1395]
37. H. Samet, S. Ketabipour, S. Afrasiabi, M. Afrasiabi, and M. Mohammadi, "Prediction of wind farm reactive power fast variations by adaptive one-dimensional convolutional neural network," Computers & Electrical Engineering, vol. 96, p. 107480, 2021/12/01/ 2021. [DOI:10.1016/j.compeleceng.2021.107480]
38. M. Afrasiabi, M. Mohammadi, M. Rastegar, and A. Kargarian, "Probabilistic deep neural network price forecasting based on residential load and wind speed predictions," IET Renewable Power Generation, vol. 13, no. 11, pp. 1840-1848, 2019. [DOI:10.1049/iet-rpg.2018.6257]
39. M. Afrasiabi, M. Mohammadi, M. Rastegar, L. Stankovic, S. Afrasiabi, and M. Khazaei, "Deep-Based Conditional Probability Density Function Forecasting of Residential Loads," IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3646-3657, 2020. [DOI:10.1109/TSG.2020.2972513]
40. L. Jian-Chang, N. Dong-Xiao, and J. Zheng-Yuan, "A study of short-term load forecasting based on ARIMA-ANN," in Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, vol. 5, pp. 3183-3187 vol.5.
41. H. Chen, Q. Wan, B. Zhang, F. Li, and Y. Wang, "Short-term load forecasting based on asymmetric ARCH models," in IEEE PES General Meeting, 2010, pp. 1-6. [DOI:10.1109/PES.2010.5590185]
42. H. Cui and X. Peng, "Short-Term City Electric Load Forecasting with Considering Temperature Effects: An Improved ARIMAX Model," Mathematical Problems in Engineering, vol. 2015, p. 589374, 2015/07/14 2015. [DOI:10.1155/2015/589374]
43. S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, "Designing a composite deep learning based differential protection scheme of power transformers," Applied Soft Computing, vol. 87, p. 105975, 2020/02/01/ 2020. [DOI:10.1016/j.asoc.2019.105975]
44. M. Afrasiabi, S. Afrasiabi, B. Parang, and M. Mohammadi, "Power transformers internal fault diagnosis based on deep convolutional neural networks," Journal of Intelligent & Fuzzy Systems, vol. 37, pp. 1165-1179, 2019. [DOI:10.3233/JIFS-182615]
45. C. Hong, C. A. Canizares, and A. Singh, "ANN-based short-term load forecasting in electricity markets," in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, vol. 2, pp. 411-415 vol.2.
46. A. Selakov, D. Cvijetinović, L. Milović, S. Mellon, and D. Bekut, "Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank," Applied Soft Computing, vol. 16, pp. 80-88, 2014/03/01/ 2014. [DOI:10.1016/j.asoc.2013.12.001]
47. P. Zhang, X. Wu, X. Wang, and S. Bi, "Short-term load forecasting based on big data technologies," CSEE Journal of Power and Energy Systems, vol. 1, no. 3, pp. 59-67, 2015. [DOI:10.17775/CSEEJPES.2015.00036]
48. C. Ying-Ying, P. P. K. Chan, and Q. Zhi-Wei, "Random forest based ensemble system for short term load forecasting," in 2012 International Conference on Machine Learning and Cybernetics, 2012, vol. 1, pp. 52-56.
49. M. El-Hendawi and Z. Wang, "An ensemble method of full wavelet packet transform and neural network for short term electrical load forecasting," Electric Power Systems Research, vol. 182, p. 106265, 2020/05/01/ 2020. [DOI:10.1016/j.epsr.2020.106265]
50. C. López, W. Zhong, and M. Zheng, "Short-term Electric Load Forecasting Based on Wavelet Neural Network, Particle Swarm Optimization and Ensemble Empirical Mode Decomposition," Energy Procedia, vol. 105, pp. 3677-3682, 2017/05/01/ 2017. [DOI:10.1016/j.egypro.2017.03.847]
51. Y. Liang, D. Niu, and W.-C. Hong, "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, vol. 166, pp. 653-663, 2019/01/01/ 2019. [DOI:10.1016/j.energy.2018.10.119]
52. R. K. Jagait, M. N. Fekri, K. Grolinger, and S. Mir, "Load Forecasting Under Concept Drift: Online Ensemble Learning With Recurrent Neural Network and ARIMA," IEEE Access, vol. 9, pp. 98992-99008, 2021. [DOI:10.1109/ACCESS.2021.3095420]
53. W. Dong, H. Sun, J. Tan, Z. Li, J. Zhang, and Y. Y. Zhao, "Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis," Energy Reports, vol. 7, pp. 7675-7692, 2021/11/01/ 2021. [DOI:10.1016/j.egyr.2021.11.021]
54. S. Afrasiabi, M. Mohammadi, M. Afrasiabi, and B. Parang, "Modulated Gabor filter based deep convolutional network for electrical motor bearing fault classification and diagnosis," IET Science, Measurement & Technology, vol. 15, no. 2, pp. 154-162, 2021. [DOI:10.1049/smt2.12017]
55. S. Afrasiabi, M. Afrasiabi, M. Mohammadi, and B. Parang, "Fault localisation and diagnosis in transmission networks based on robust deep Gabor convolutional neural network and PMU measurements," IET Generation, Transmission & Distribution, vol. 14, no. 26, pp. 6484- [DOI:10.1049/iet-gtd.2020.0856]
56. S. Afrasiabi, M. Afrasiabi, B. Parang, M. Mohammadi, S. Kahourzade, and A. Mahmoudi, "Two-Stage Deep Learning-based Wind Turbine Condition Monitoring Using SCADA Data," in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16-19 Dec. 2020 2020, pp. 1-6. [DOI:10.1109/PEDES49360.2020.9379393]
57. H. Samet, S. Ketabipoor, M. Afrasiabi, S. Afrasiabi, and M. Mohammadi, "Deep Learning Forecaster based Controller for SVC: Wind Farm Flicker Mitigation," IEEE Transactions on Industrial Informatics, pp. 1-1, 2020.
58. X. Kong, C. Li, F. Zheng, and C. Wang, "Improved Deep Belief Network for Short-Term Load Forecasting Considering Demand-Side Management," IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1531-1538, 2020. [DOI:10.1109/TPWRS.2019.2943972]
59. H. Chen, S. Wang, S. Wang, and Y. Li, "Day-ahead aggregated load forecasting based on two-terminal sparse coding and deep neural network fusion," Electric Power Systems Research, vol. 177, p. 105987, 2019/12/01/ 2019. [DOI:10.1016/j.epsr.2019.105987]
60. S. Afrasiabi, M. Afrasiabi, B. Parang, M. Mohammadi, S. Kahourzade, and A. Mahmoudi, "Two-Stage Deep Learning-based Wind Turbine Condition Monitoring Using SCADA Data," in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020, pp. 1-6. [DOI:10.1109/PEDES49360.2020.9379393]
61. S. Afrasiabi, M. Afrasiabi, B. Parang, M. Mohammadi, H. Samet, and T. Dragicevic, "Fast GRNN-Based Method for Distinguishing Inrush Currents in Power Transformers," IEEE Transactions on Industrial Electronics, pp. 1-1, 2021. [DOI:10.1109/TIE.2021.3109535]
62. S. Afrasiabi et al., "Detection and Localization of Transmission Line Faults based on a Hybrid Two-Stage Technique considering Wind Power Generation," in 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2021, pp. 1-5. [DOI:10.1109/EEEIC/ICPSEurope51590.2021.9584525]
63. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269. [DOI:10.1109/CVPR.2017.243]
64. K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, "Residual Networks of Residual Networks: Multilevel Residual Networks," IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 6, pp. 1303-1314, 2018. [DOI:10.1109/TCSVT.2017.2654543]
65. S. Afrasiabi, M. Afrasiabi, B. Parang, and M. Mohammadi, "Integration of Accelerated Deep Neural Network Into Power Transformer Differential Protection," IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp. 865-876, 2020. [DOI:10.1109/TII.2019.2929744]
66. M. Afrasiabi, M. Mohammadi, M. Rastegar, and S. Afrasiabi, "Advanced Deep Learning Approach for Probabilistic Wind Speed Forecasting," IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 720-727, 2021. [DOI:10.1109/TII.2020.3004436]
67. S. Afrasiabi, M. Afrasiabi, M. A. Jarrahi, and M. Mohammadi, "Fault Location and Faulty Line Selection in Transmission Networks: Application of Improved Gated Recurrent Unit," IEEE Systems Journal, pp. 1-11, 2022. [DOI:10.1109/JSYST.2022.3172406]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ganjouri M, Moattari M, Forouzantabar A, Azadi M. Design of a multi-level deep residual neural network for short-term prediction of electrical loads in power systems. ieijqp 2023; 12 (2) :1-11
URL: http://ieijqp.ir/article-1-913-fa.html

گنجوری مهتاب، معطری مزدا، فروزان تبار احمد، آزادی محمد. طراحی شبکه باقی مانده عصبی عمیق چند سطحی برای پیش بینی کوتاه مدت بارهای الکتریکی در سیستم های قدرت. نشریه کیفیت و بهره وری صنعت برق ایران. 1402; 12 (2) :1-11

URL: http://ieijqp.ir/article-1-913-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 2 - ( 5-1402 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4570