[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 9، شماره 1 - ( 1-1399 ) ::
جلد 9 شماره 1 صفحات 38-26 برگشت به فهرست نسخه ها
تعیین مکان‌، اندازه و بهره برداری بهینه باتری و فیلتر پسیو برای غلبه بر مشکلات اضافه ولتاژ و هارمونیک در یک شبکه توزیع برق با ضریب نفوذ بالای سامانه‌های فتوولتاییک
محمد رسول جان‌نثار1 ، علیرضا صدیقی* 1، مهدی ثواقبی2 ، فاطمه اعلم3 ، فریده بهداد3
1- دانشگاه یزد
2- دانشگاه دانمارک جنوبی
3- شرکت توزیع نیروی برق
چکیده:   (3103 مشاهده)
سامانه­ های فتوولتاییک با وجود مزایای فراوان ممکن است آثار سوئی همانند مسائل کیفیت توان (افزایش ولتاژ و هارمونیک)، افزایش سطح اتصال کوتاه، مسائل حفاظت و گذرا برای شبکه به همراه داشته باشند. دسته ­ای از این آثار، ناشی از ضریب نفوذ بالای این سامانه‌ها است که شبکه را با پدیده افزایش ولتاژ و هارمونیک مواجه می­ سازد. در این مقاله مکان‌، اندازه و بهره ­برداری بهینه باتری و فیلتر پسیو به ­صورت جداگانه و هم‌زمان، به‌منظور ارائه اقدامات عملی برای غلبه بر مشکلات اضافه ولتاژ و هارمونیک تعیین شده است. در تابع هدف اقتصادی مسئله، هزینه ثابت و بهره‌برداری باتری و فیلتر پسیو در نظر گرفته شده و قیود به‌صورت محدود شدن هارمونیک کل ولتاژ و ولتاژ مؤثر باس­ های شبکه در بازه استاندارد تعریف گردیده‌اند. با در نظر گرفتن سود ناشی از خرید و فروش انرژی و کاهش تلفات شبکه در تابع هدف، این نتیجه حاصل شده است که استفاده از فیلتر به‌تنهایی، دارای کمترین هزینه به میزان 736 دلار است (اما منجر به فراتر رفتن اندازه ولتاژ مؤثر از مقدار مجاز 5% می­ شود). همچنین استفاده از باتری و فیلتر به‌صورت هم‌زمان، دارای بیشترین کاهش تلفات به میزان 4.1kWh است که میزان هارمونیک کل ولتاژ و ولتاژ مؤثر باس ­ها نیز در محدوده مجاز 5% قرار می­ گیرند. همچنین کابل‌ها، خطوط و ترانسفورماتور شبکه به‌صورت وابسته به فرکانس مدلسازی شده‌اند. شبکه مورد مطالعه، یک فیدر فشار ضعیف واقعی شامل دو سامانه فتوولتاییک می­ باشد که در شبیه ­سازی ضریب نفوذ آنها افزایش داده شده است. شبیه ­­سازی­ها، توسط نرم‌افزارهای DIgSILENT و MATLAB و با استفاده از ارتباط آنها به هم انجام شده است.
واژه‌های کلیدی: فتوولتاییک، ضریب نفوذ بالا، اضافه ولتاژ و هارمونیک، بهینه سازی، باتری و فیلتر پسیو، تلفات و مزایای اقتصادی
متن کامل [PDF 1268 kb]   (737 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1398/5/30 | پذیرش: 1398/11/15 | انتشار: 1399/1/25
فهرست منابع
1. [1] M. M. Hague and P. Wolfs, "A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures," Renewable and Sustainable Energy Reviews, vol. 62, pp. 1195-1208, Sep. 2016. [DOI:10.1016/j.rser.2016.04.025]
2. [2] N. D. Laws, B. P. Epps, S. O. Peterson, M. S. Laser and G. K. Wanjiru, "On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage," Applied Energy, vol. 185, Part 1, pp. 627-641, Jan. 2017. [DOI:10.1016/j.apenergy.2016.10.123]
3. [3] R. Bakhshi and J. Sadeh, "Evaluation of grid-connected photovoltaic systems viability under a new dynamic feed-in tariff scheme: A case study in Iran," Renewable Energy, vol. 119, pp. 354-364, April 2018. [DOI:10.1016/j.renene.2017.11.093]
4. [4] M. Karimi, H. Mokhlis, K. Naidu, S. Uddin and A.H.A. Bakar, "Photovoltaic penetration issues and impacts in distribution network - A review," Renewable and Sustainable Energy Reviews, vol. 53, pp. 594-605, Jan. 2016. [DOI:10.1016/j.rser.2015.08.042]
5. [5] F. Marra, Y. Guangya, C. Traeholt, J. Ostergaard and E. Larsen, "A Decentralized Storage Strategy for Residential Feeders With Photovoltaics," IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 974-981, March 2014. [DOI:10.1109/TSG.2013.2281175]
6. [6] F. Marra, G. Y. Yang, C. Traeholt, E. Larsen, J. Ostergaard, B. Blazic and W. Deprez, "EV Charging Facilities and Their Application in LV Feeders With Photovoltaics," IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1533-1540, Sep. 2013. [DOI:10.1109/TSG.2013.2271489]
7. [7] علی احمدیان، مهدی صدقی و مسعود علی¬اکبر گلکار، "بهره‌برداری بهینه از شبکه‌های توزیع فعال با قابلیت جزیره‌ای شدن در حضور منابع تولید توان بادی، ذخیره‌سازها و خودروهای برقی"، نشریه کیفیت و بهره¬وری صنعت برق ایران، سال سوم، شماره ششم، صفحات 32-20، 1393.
8. [8] J. Sardi, N. Mithulananthan, M. Gallagher and D. Q. Hung, "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied Energy, vol. 190, pp. 453-463, March 2017. [DOI:10.1016/j.apenergy.2016.12.144]
9. [9] S. Hashemi, J. Ostergaard and Y. Guangya, "A Scenario-Based Approach for Energy Storage Capacity Determination in LV Grids With High PV Penetration," IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1514-1522, May 2014. [DOI:10.1109/TSG.2014.2303580]
10. [10] رضا اسلامی، حامد نفیسی و سید امیر حسینی، " ارائه روشی جدید به منظور بهینه‌سازی مدیریت شارژ و دشارژ PHEVها با هدف بهبود پارامترهای الکتریکی شبکه"، نشریه کیفیت و بهره¬وری صنعت برق ایران، سال هشتم، شماره پانزدهم، صفحات 52-41، 1398.
11. [11] E. Reihani and R. Ghorbani, "Load commitment of distribution grid with high penetration of photovoltaics (PV) using hybrid series-parallel prediction algorithm and storage," Electric Power Systems Research, vol. 131, pp. 224-230, Feb. 2016. [DOI:10.1016/j.epsr.2015.09.004]
12. [12] L. Xiaohu, A. Aichhorn and L. Liming, L. Hui, "Coordinated Control of Distributed Energy Storage System With Tap Changer Transformers for Voltage Rise Mitigation Under High Photovoltaic Penetration," IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 897-906, June 2012. [DOI:10.1109/TSG.2011.2177501]
13. [13] مجید داغی، مهدی صدقی و مسعود علی¬اکبر گلکار، "برنامه¬ریزی بهینه¬ی باتری¬ها در شبکه توزیع فعال با در نظر گرفتن تکنولوژی‌های مختلف در شرایط فنی و اقتصادی غیرقطعی"، نشریه کیفیت و بهره¬وری صنعت برق ایران، سال پنجم، شماره دهم، صفحات 24-14، 1395.
14. [14] J. Sardi, N. Mithulananthan and D. Q. Hung, "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, vol. 206, pp. 159-171, Nov. 2017. [DOI:10.1016/j.apenergy.2017.08.186]
15. [15] Y. Yang, H. Li, A. Aichhorn, J. Zheng and M. Greenleaf, "Sizing Strategy of Distributed Battery Storage System With High Penetration of Photovoltaic for Voltage Regulation and Peak Load Shaving," IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 982-991, March 2014. [DOI:10.1109/TSG.2013.2282504]
16. [16] H. Jia, Ch. Wanga, P. Lia, J. Zhaoa, G. Songa and J. Wub, "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, vol. 218, pp. 338-348, May 2018. [DOI:10.1016/j.apenergy.2018.02.170]
17. [17] حسین لطفی، رضا قاضی و محمد باقر نقیبی سیستانی، " استراتژی بهینه مدیریت انرژی در شبکه‌های توزیع هوشمند با در نظر گرفتن اثر منابع تولید پراکنده و واحد‌های ذخیره انرژی"، نشریه کیفیت و بهره¬وری صنعت برق ایران، سال هشتم، شماره هفدهم، صفحات 29-22، 1398.
18. [18] H. Sugihara, K. Yokoyama, O. Saeki, K. Tsuji and T. Funaki, "Economic and Efficient Voltage Management Using Customer-Owned Energy Storage Systems in a Distribution Network With High Penetration of Photovoltaic Systems," IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 102-111, Feb 2013. [DOI:10.1109/TPWRS.2012.2196529]
19. [19] M. R. Jannesar, A. Sedighi, M. Savaghebi and J. M. Guerrero, "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, vol. 226, pp. 957-966, Sep. 2018. [DOI:10.1016/j.apenergy.2018.06.036]
20. [20] S. Sakar, M. E. Balci, Sh. H. E. A. Aleem and A. F. Zobaa, "Increasing PV hosting capacity in distorted distribution systems using passive harmonic filtering," Electric Power Systems Research, vol. 148, pp. 74-86, July 2017. [DOI:10.1016/j.epsr.2017.03.020]
21. [21] Y. Y. Hong, Ch. Sh. Chiu and Sh. W. Huang, "Multi-scenario passive filter planning in factory distribution system by using Markov model and probabilistic Sugeno fuzzy reasoning," Applied Soft Computing, vol. 41, pp. 352-361, April 2016. [DOI:10.1016/j.asoc.2016.01.015]
22. [22] S. Sakar, M. E. Balci, Sh. H. E. A. Aleem and A. F. Zobaa, "Integration of large- scale PV plants in non-sinusoidal environments: Considerations on hosting capacity and harmonic distortion limits," Renewable and Sustainable Energy Reviews, vol. 82, Part 1, pp. 176-186, Feb. 2018. [DOI:10.1016/j.rser.2017.09.028]
23. [23] Y. L. Chen, "Optimal multi-objective single-tuned harmonic filter planning," IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1191-1197, April 2005. [DOI:10.1109/TPWRD.2002.844282]
24. [24] Y. P. Chang and Ch. Low, "Optimization of a passive harmonic filter based on the neural-genetic algorithm with fuzzy logic for a steel manufacturing plant," Expert Systems with Applications, vol. 34, no. 3, pp. 2059-2070, April 2008. [DOI:10.1016/j.eswa.2007.02.040]
25. [25] Y. P. Chang, "Integration of SQP and PSO for optimal planning of harmonic filters," Expert Systems with Applications, vol. 37, no. 3, pp. 2522-2530, March 2010. [DOI:10.1016/j.eswa.2009.08.025]
26. [26] G. W. Chang, S. Y. Chu and H. L. Wang, "A new method of passive harmonic filter planning for controlling voltage distortion in a power system," IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 305-312, Jan. 2006. [DOI:10.1109/TPWRD.2005.852355]
27. [27] M. Mohammadi, "Bacterial foraging optimization and adaptive version for economically optimum sitting, sizing and harmonic tuning orders setting of LC harmonic passive power filters in radial distribution systems with linear and nonlinear loads," Applied Soft Computing, vol. 29, pp. 345-356, April 2015. [DOI:10.1016/j.asoc.2015.01.021]
28. [28] M. Mohammadi, A. M. Rozbahani and M. Montazeri, "Multi criteria simultaneous planning of passive filters and distributed generation simultaneously in distribution system considering nonlinear loads with adaptive bacterial foraging optimization approach," International Journal of Electrical Power & Energy Systems, vol. 79, pp. 253-262, July 2016. [DOI:10.1016/j.ijepes.2016.01.013]
29. [29] N. H. B. A. Kahar and A. F.Zobaa, "Application of mixed integer distributed ant colony optimization to the design of undamped single-tuned passive filters based harmonics mitigation," Swarm and Evolutionary Computation, to be published. doi: 10.1016/j.swevo.2018.03.004. [DOI:10.1016/j.swevo.2018.03.004]
30. [30] J. C. Leite, I. P. Abril and M. S. S. Azevedo, "Capacitor and passive filter placement in distribution systems by nondominated sorting genetic algorithm-II," Electric Power Systems Research, vol. 143, pp. 482-489, Feb. 2017. [DOI:10.1016/j.epsr.2016.10.026]
31. [31] N. Yang and M. Le, "Optimal design of passive power filters based on multi-objective bat algorithm and pareto front," Applied Soft Computing, vol. 35, pp. 257-266, Oct. 2015. [DOI:10.1016/j.asoc.2015.05.042]
32. [32] A. Salimbeni, M. Boi, I. Marongiu, M. Porru and A. Damiano,, "Integration of active filter and energy storage system for power quality improvement in microgrids," in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Anacapri, 2016. [DOI:10.1109/SPEEDAM.2016.7526040]
33. [33] S. Bai and S. M. Lukic, "Unified Active Filter and Energy Storage System for an MW Electric Vehicle Charging Station," IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5793-5803, Dec. 2013. [DOI:10.1109/TPEL.2013.2245146]
34. [34] M. Ding, Zh. Chen, Bo Wang, Z. Chen, Y. Luo and G. Zheng, "Unified control of smoothing out wind power fluctuations and active power filtering by an energy storage system," in IEEE PES Innovative Smart Grid Technologies, Tianjin, 2012.
35. [35] Z. Yan and X. Zhang, "General Energy Filters for Power Smoothing, Tracking and Processing Using Energy Storage," IEEE Access, vol. 5, pp. 19373-19382, 2017. [DOI:10.1109/ACCESS.2017.2737547]
36. [36] A. Kalair, N. Abas, A. R. Kalair, Z. Saleem and N. Khan, "Review of harmonic analysis, modeling and mitigation techniques," Renewable and Sustainable Energy Reviews, vol. 78, pp. 1152-1187, Oct. 2017. [DOI:10.1016/j.rser.2017.04.121]
37. [37] R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, McGraw-Hill Education, 2012.
38. [38] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, New Jersey: John Wiley & Sons, 2008. [DOI:10.1002/9780470230381]
39. [39] "IEEE Draft Guide for Applying Harmonic Limits on Power Systems," IEEE P519.1/D12, Feb. 2015.
40. [40] A. Oudalov, D. Chartouni, C. Ohler and G. Linhofer, "Value Analysis of Battery Energy Storage Applications in Power Systems," in Power Systems Conference and Exposition, Oct. 29 2006 - Nov. 1 2006. [DOI:10.1109/PSCE.2006.296284]
41. [41] "Technical Reference Documentation: Filter/Shunt," power factory Company, Germany, 2018.
42. [42] J. Wasilewski, W. Wiechowski and C. L. Bak, "Harmonic domain modeling of a distribution system using the DIgSILENT PowerFactory software," in 2005 International Conference on Future Power Systems, Amsterdam, 2005. [DOI:10.1109/FPS.2005.204272]
43. [43] "EPRI-DOE Handbook Supplement of Energy Storage for Grid Connected Wind Generation Applications," Technical Update, Dec. 2004.
44. [44] C. Kawann and A. E. Emanuel, "Passive shunt harmonic filters for low and medium voltage: a cost comparison study," IEEE Transactions on Power Systems, vol. 11, no. 4, pp. 1825-1831, Nov. 1996. [DOI:10.1109/59.544649]
45. [45] M. M. Elkholy, M. A. El-Hameed, and A. A. El-Fergany, "Harmonic analysis of hybrid renewable microgrids comprising optimal design of passive filters and uncertainties," Electric Power Systems Research, vol. 163, Part A, pp. 491-501, Oct. 2018. [DOI:10.1016/j.epsr.2018.07.023]
46. [46] R. C. Leou, "An economic analysis model for the energy storage system applied to a distribution substation," International Journal of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 132-137, Jan. 2012. [DOI:10.1016/j.ijepes.2011.09.016]
47. [47] Y. P. Chang, Ch. Low, and Sh. Y. Hung, "Integrated feasible direction method and genetic algorithm for optimal planning of harmonic filters with uncertainty conditions," Expert Systems with Applications, vol. 36, no. 2, pp. 3946-3955, March 2009. [DOI:10.1016/j.eswa.2008.02.033]
48. [48] M. Alamaniotis, Ni. Gatsis, L. H. Tsoukalas, "Virtual Budget: Integration of electricity load and price anticipation for load morphing in price-directed energy utilization," Electric Power Systems Research, vol. 158, pp. 284-296, May 2018. [DOI:10.1016/j.epsr.2018.01.006]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jannesar M R, Sedighi A, Savaghebi M, Aalam F, Behdad F. Optimal Sitting, Sizing, and Operation of Batteries and Passive Filters to Mitigate Over-voltage and Harmonic Problems in Distribution Networks with High Photovoltaic Penetration. ieijqp 2020; 9 (1) :26-38
URL: http://ieijqp.ir/article-1-663-fa.html

جان‌نثار محمد رسول، صدیقی علیرضا، ثواقبی مهدی، اعلم فاطمه، بهداد فریده. تعیین مکان‌، اندازه و بهره برداری بهینه باتری و فیلتر پسیو برای غلبه بر مشکلات اضافه ولتاژ و هارمونیک در یک شبکه توزیع برق با ضریب نفوذ بالای سامانه‌های فتوولتاییک. نشریه کیفیت و بهره وری صنعت برق ایران. 1399; 9 (1) :26-38

URL: http://ieijqp.ir/article-1-663-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 1 - ( 1-1399 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4645