[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 3 (11-2024) ::
ieijqp 2024, 13(3): 0-0 Back to browse issues page
A dynamic modeling approach for short-term prediction of sun radiation
Ayoub Mirtavoosi *1 , Sepehr Tabatabaei
Abstract:   (520 Views)
The use of renewable energies for electricity generation has been intensely focused on in recent decades. In this regard, one of the most important approaches is the use of solar cells and power generation from solar radiation. For this purpose, a complete and precise set including solar panels, inverters, and the sizing of components to convert solar power to electricity should be provided. Since the regulation of all the parameters of this set depends on the level of radiation, predicting the amount of radiation will be very useful for improving the performance of the solar power plant. The main goal of this article is to propose a dynamic equation for predicting the received solar radiation. For this purpose, a dynamic model is assumed. With this assumption, instantaneous radiation, contrary to similar articles, is not a function of geographical characteristics but rather a function of previous radiation values. The aim is to derive the instantaneous radiation value’s dependency on its recent values. To achieve this, the data related to radiation at a specific location is measured. We consider a neural network to estimate the radiation. This network is trained, and the training and testing errors are considered as performance criteria. Then a procedure is proposed to detect the order of the proposed model, and finally, the model is presented. It will be shown that this dynamic model is independent of location and time and is capable of estimating and predicting radiation under all conditions.
Keywords: short-term prediction, Multilayer Perceptron, Maximum power point tracking, dynamic model
     
Type of Study: Research |
Received: 2022/12/12 | Accepted: 2024/01/22 | Published: 2025/04/6
References
1. [24] میرطاوسی, سید ایوب, طباطبائی, & سید سپهر. (2022). مدلسازی دینامیکی رابطه بین میزان ویسکوالاستیک بودن بافت نرم و حالت لحظه ای آن. مدل سازی در مهندسی, 20(69)
2. [1] Jestin-Fleury, N. (1994). International energy agency. World energy outlook. Politique étrangère, 59(2), 564-565.
3. [2] Halkos, G. E., & Gkampoura, E. C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 13(11), 2906. [DOI:10.3390/en13112906]
4. [3] Pierro, M., Cornaro, C., Moser, D., Betti, A., Morschella, M., Collino, E., ... & van Sark, W. G. J. H. M. (2020). Regional solar power forecasting 2020.
5. [4] Pavan, A. M., & Lughi, V. (2012, December). Photovoltaics in Italy: Toward grid parity in the residential electricity market. In 2012 24th International Conference on Microelectronics (ICM) (pp. 1-4). IEEE. [DOI:10.1109/ICM.2012.6471415]
6. [5] Zulkifly, Z. A. I. M., Baharin, K. A., & Gan, C. K. (2021). Improved Machine Learning Model Selection Techniques for Solar Energy Forecasting Applications. International Journal of Renewable Energy Research (IJRER), 11(1), 308-319.
7. [6] Pavan, A. M., & Lughi, V. (2013, June). Grid parity in the Italian commercial and industrial electricity market. In 2013 International Conference on Clean Electrical Power (ICCEP) (pp. 332-335). IEEE. [DOI:10.1109/ICCEP.2013.6587010]
8. [7] Ahmed, R., Sreeram, V., Mishra, Y., & Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792. [DOI:10.1016/j.rser.2020.109792]
9. [8] Raza, M. Q., Nadarajah, M., & Ekanayake, C. (2016). On recent advances in PV output power forecast. Solar Energy, 136, 125-144. [DOI:10.1016/j.solener.2016.06.073]
10. [9] Zhang, X., Li, Y., Lu, S., Hamann, H. F., Hodge, B. M., & Lehman, B. (2018). A solar time based analog ensemble method for regional solar power forecasting. IEEE Transactions on Sustainable Energy, 10(1), 268-279. [DOI:10.1109/TSTE.2018.2832634]
11. [10] Yang, D., Kleissl, J., Gueymard, C. A., Pedro, H. T., & Coimbra, C. F. (2018). History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168, 60-101. [DOI:10.1016/j.solener.2017.11.023]
12. [11] Ciechulski, T., & Osowski, S. (2014). Badanie jakości predykcji obciążeń elektroenergetycznych za pomocą sieci neuronowych SVM, RBF i MLP. Przegląd Elektrotechniczny, 90(8), 148-151.
13. [12] Yona, A., Senjyu, T., Saber, A. Y., Funabashi, T., Sekine, H., & Kim, C. H. (2008, July). Application of neural network to 24-hour-ahead generating power forecasting for PV system. In 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1-6). IEEE. [DOI:10.1109/PES.2008.4596295]
14. [13] Dralus, G., Mazur, D., Gołębiowski, M., & Gołębiowski, L. (2018, June). One day-ahead forecasting at different time periods of energy production in photovoltaic systems using neural networks. In 2018 International Symposium on Electrical Machines (SME) (pp. 1-5). IEEE. [DOI:10.1109/ISEM.2018.8442996]
15. [14] Wang, J., Qian, Z., Wang, J., & Pei, Y. (2020). Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. Energies, 13(12), 3259. [DOI:10.3390/en13123259]
16. [15] Visser, L., AlSkaif, T., & van Sark, W. (2022). Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution. Renewable Energy, 183, 267-282. [DOI:10.1016/j.renene.2021.10.102]
17. [16] Tafticht, T., Agbossou, K., Doumbia, M. L., & Cheriti, A. (2008). An improved maximum power point tracking method for photovoltaic systems. Renewable energy, 33(7), 1508-1516. [DOI:10.1016/j.renene.2007.08.015]
18. [17] Gergaud, O., Multon, B., & Ahmed, H. B. (2002, August). Analysis and experimental validation of various photovoltaic system models. In Electrimacs (p. 6p).
19. [18] Yue, M., & Wang, X. (2014). A revised incremental conductance MPPT algorithm for solar PV generation systems. arXiv preprint arXiv:1405.4890.
20. [19] Muni, T. V., & Lalitha, S. V. N. L. (2020). Implementation of control strategies for optimum utilization of solar photovoltaic systems with energy storage systems. International Journal of Renewable Energy Research, 10(2).
21. [20] Pakkiraiah, B., & Sukumar, G. D. (2016). Research survey on various MPPT performance issues to improve the solar PV system efficiency. [DOI:10.1155/2016/8012432]
22. [21] Lunde, P. J. (1980). Solar thermal engineering: space heating and hot water systems.
23. [22] Nijegorodov, N., Devan, K. R. S., Jain, P. K., & Carlsson, S. (1994). Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude. Renewable Energy, 4(5), 529-543. [DOI:10.1016/0960-1481(94)90215-1]
24. [23] https://solargostaran.com/files/manuals/Taban/Taban%2072cell%20Poly%20panels-320%20to%20330%20watt.pdf



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirtavoosi A, Tabatabaei S. A dynamic modeling approach for short-term prediction of sun radiation. ieijqp 2024; 13 (3)
URL: http://ieijqp.ir/article-1-943-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 3 (11-2024) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.04 seconds with 40 queries by YEKTAWEB 4713