1. [24] میرطاوسی, سید ایوب, طباطبائی, & سید سپهر. (2022). مدلسازی دینامیکی رابطه بین میزان ویسکوالاستیک بودن بافت نرم و حالت لحظه ای آن. مدل سازی در مهندسی, 20(69) 2. [1] Jestin-Fleury, N. (1994). International energy agency. World energy outlook. Politique étrangère, 59(2), 564-565. 3. [2] Halkos, G. E., & Gkampoura, E. C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 13(11), 2906. [ DOI:10.3390/en13112906] 4. [3] Pierro, M., Cornaro, C., Moser, D., Betti, A., Morschella, M., Collino, E., ... & van Sark, W. G. J. H. M. (2020). Regional solar power forecasting 2020. 5. [4] Pavan, A. M., & Lughi, V. (2012, December). Photovoltaics in Italy: Toward grid parity in the residential electricity market. In 2012 24th International Conference on Microelectronics (ICM) (pp. 1-4). IEEE. [ DOI:10.1109/ICM.2012.6471415] 6. [5] Zulkifly, Z. A. I. M., Baharin, K. A., & Gan, C. K. (2021). Improved Machine Learning Model Selection Techniques for Solar Energy Forecasting Applications. International Journal of Renewable Energy Research (IJRER), 11(1), 308-319. 7. [6] Pavan, A. M., & Lughi, V. (2013, June). Grid parity in the Italian commercial and industrial electricity market. In 2013 International Conference on Clean Electrical Power (ICCEP) (pp. 332-335). IEEE. [ DOI:10.1109/ICCEP.2013.6587010] 8. [7] Ahmed, R., Sreeram, V., Mishra, Y., & Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792. [ DOI:10.1016/j.rser.2020.109792] 9. [8] Raza, M. Q., Nadarajah, M., & Ekanayake, C. (2016). On recent advances in PV output power forecast. Solar Energy, 136, 125-144. [ DOI:10.1016/j.solener.2016.06.073] 10. [9] Zhang, X., Li, Y., Lu, S., Hamann, H. F., Hodge, B. M., & Lehman, B. (2018). A solar time based analog ensemble method for regional solar power forecasting. IEEE Transactions on Sustainable Energy, 10(1), 268-279. [ DOI:10.1109/TSTE.2018.2832634] 11. [10] Yang, D., Kleissl, J., Gueymard, C. A., Pedro, H. T., & Coimbra, C. F. (2018). History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy, 168, 60-101. [ DOI:10.1016/j.solener.2017.11.023] 12. [11] Ciechulski, T., & Osowski, S. (2014). Badanie jakości predykcji obciążeń elektroenergetycznych za pomocą sieci neuronowych SVM, RBF i MLP. Przegląd Elektrotechniczny, 90(8), 148-151. 13. [12] Yona, A., Senjyu, T., Saber, A. Y., Funabashi, T., Sekine, H., & Kim, C. H. (2008, July). Application of neural network to 24-hour-ahead generating power forecasting for PV system. In 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1-6). IEEE. [ DOI:10.1109/PES.2008.4596295] 14. [13] Dralus, G., Mazur, D., Gołębiowski, M., & Gołębiowski, L. (2018, June). One day-ahead forecasting at different time periods of energy production in photovoltaic systems using neural networks. In 2018 International Symposium on Electrical Machines (SME) (pp. 1-5). IEEE. [ DOI:10.1109/ISEM.2018.8442996] 15. [14] Wang, J., Qian, Z., Wang, J., & Pei, Y. (2020). Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. Energies, 13(12), 3259. [ DOI:10.3390/en13123259] 16. [15] Visser, L., AlSkaif, T., & van Sark, W. (2022). Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution. Renewable Energy, 183, 267-282. [ DOI:10.1016/j.renene.2021.10.102] 17. [16] Tafticht, T., Agbossou, K., Doumbia, M. L., & Cheriti, A. (2008). An improved maximum power point tracking method for photovoltaic systems. Renewable energy, 33(7), 1508-1516. [ DOI:10.1016/j.renene.2007.08.015] 18. [17] Gergaud, O., Multon, B., & Ahmed, H. B. (2002, August). Analysis and experimental validation of various photovoltaic system models. In Electrimacs (p. 6p). 19. [18] Yue, M., & Wang, X. (2014). A revised incremental conductance MPPT algorithm for solar PV generation systems. arXiv preprint arXiv:1405.4890. 20. [19] Muni, T. V., & Lalitha, S. V. N. L. (2020). Implementation of control strategies for optimum utilization of solar photovoltaic systems with energy storage systems. International Journal of Renewable Energy Research, 10(2). 21. [20] Pakkiraiah, B., & Sukumar, G. D. (2016). Research survey on various MPPT performance issues to improve the solar PV system efficiency. [ DOI:10.1155/2016/8012432] 22. [21] Lunde, P. J. (1980). Solar thermal engineering: space heating and hot water systems. 23. [22] Nijegorodov, N., Devan, K. R. S., Jain, P. K., & Carlsson, S. (1994). Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude. Renewable Energy, 4(5), 529-543. [ DOI:10.1016/0960-1481(94)90215-1] 24. [23] https://solargostaran.com/files/manuals/Taban/Taban%2072cell%20Poly%20panels-320%20to%20330%20watt.pdf
|