[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 3 (5-2022) ::
ieijqp 2022, 11(3): 19-30 Back to browse issues page
Optimal location of protection devices based on the importance of reliability in the distribution network with an improved genetic algorithm
Mohammad ebrahim Hajiabadi * 1, Mahdi Samadi1 , Hossein Lotfi1
1- Department of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran
Abstract:   (1265 Views)
Distribution networks are always exposed to many blackouts due to their sizes. Reducing downtime, reducing energy not supplied, increasing reliability, and thus, increasing customer satisfaction are important goals of distribution companies. The performance of power systems is affected by many factors such as various faults, network maneuvers, and unwanted equipment outages. Protective switches can reduce subscribers' downtime, energy not supplied, and associated costs by isolating faulty network points. On the other hand, due to the high costs of purchasing, installing, and maintaining protective equipment such as reclosers and sectionalizers, distribution companies seek to minimize these costs. Therefore, determining the minimum number of reclosers and sectionalizer switches required for reliable protection of the network and their optimal installation location is one of the basic needs of distribution network operators. The main purpose of this study is to determine the number and optimal location of recloser and sectionalizer switches in a distribution network using an improved genetic algorithm. The proposed objective function, which has been formulated to improve four reliability indices, consists of four terms, i.e., System Average Interruption Duration Index (SAIDI), Energy Not Supplied (ENS), Average Interruption Frequency Index (MAIFI), and System Average Interruption Frequency Index (SAIFI). Also, the limitations of operation are related to the number and installation place of protective devices. Considering the radiality of the feeders studied in this study, in order to implement the mentioned limitations, first all the branches and nodes under each branch in the feeder graph should be obtained. The nodes and branches under each branch in the network graph are the nodes and branches that will become isolated from the reference bus and lose their power if the branch is removed. Therefore, a practical method based on graph theory is presented to calculate all the nodes and branches under each branch.
The genetic algorithm is a very practical algorithm  in solving complex and non-convex optimization problems, but in the optimization process, some defective genes may enter the next generation and the algorithm may face local optima. Therefore, the study adopts the elitism mechanism, so genes with higher competence enter the next generation before entering the crossover and mutation process. The proposed method is tested on one of the distribution feeders in Bojnourd city called Nader and its results are compared with other evolutionary methods such as the genetic algorithm, shuffled frog leaping, and particle swarm optimization. The results reveal that the proposed method outperforms other evolutionary algorithms
Keywords: Protective equipment, Genetic algorithm, energy not supplied, Graph, Recloser, Sectionalizer
Full-Text [PDF 1505 kb]   (186 Downloads)    
Type of Study: Research |
Received: 2022/02/10 | Accepted: 2022/08/22 | Published: 2022/11/23
References
1. Alam, A., Pant, V., & Das, B. (2016). Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates. Electric Power Systems Research, 140, 619-630. [DOI:10.1016/j.epsr.2016.05.012]
2. Alam, A., Tariq, M., Zaid, M., Verma, P., Alsultan, M., Ahmad, S., Sarwar, A., & Hossain, M. A. (2021). Optimal placement of reclosers in a radial distribution system for reliability improvement. Electronics, 10(24), 3182. [DOI:10.3390/electronics10243182]
3. Amohadi, M., & firuzabad, m. f. (2019). Optimal placement of switching and protection devices in radial distribution networks to enhance system reliability using the AHP-PSO method. Turkish Journal of Electrical Engineering and Computer Sciences, 27(1), 181-196. [DOI:10.3906/elk-1806-130]
4. Bernardon, D. P., Sperandio, M., Garcia, V. J., Canha, L. N., da Rosa Abaide, A., & Daza, E. F. B. (2011). AHP decision-making algorithm to allocate remotely controlled switches in distribution networks. IEEE Transactions on Power Delivery, 26(3), 1884-1892. [DOI:10.1109/TPWRD.2011.2119498]
5. Billinton, R., & Jonnavithula, S. (1996). Optimal switching device placement in radial distribution systems. IEEE Transactions on Power Delivery, 11(3), 1646-1651. [DOI:10.1109/61.517529]
6. Carvalho, P., Ferreira, L., & Da Silva, A. C. (2005). A decomposition approach to optimal remote controlled switch allocation in distribution systems. IEEE Transactions on Power Delivery, 20(2), 1031-1036. [DOI:10.1109/TPWRD.2004.838470]
7. Chen, C.-S., Lin, C.-H., Chuang, H.-J., Li, C.-S., Huang, M.-Y., & Huang, C.-W. (2006). Optimal placement of line switches for distribution automation systems using immune algorithm. IEEE Transactions on power systems, 21(3), 1209-1217. [DOI:10.1109/TPWRS.2006.876673]
8. da Silva, L. G. W., Pereira, R. A. F., Abbad, J. R., & Mantovani, J. R. S. (2008). Optimised placement of control and protective devices in electric distribution systems through reactive tabu search algorithm. Electric Power Systems Research, 78(3), 372-381. [DOI:10.1016/j.epsr.2007.03.005]
9. Dezaki, H., Abyaneh, H., Agheli, A., & Mazlumi, K. (2012). Optimized switch allocation to improve the restoration energy in distribution systems. Journal of Electrical Engineering, 63(1), 47. [DOI:10.2478/v10187-012-0007-9]
10. Dhole, S., Mir, M., Hasan, K. N., Farhan, A., Yaghoobi, J., Veselov, A., & Dart, D. (2021). Optimal Recloser Placement in Power Networks Based on Reliability and Cost-Benefit Analysis. 2021 31st Australasian Universities Power Engineering Conference (AUPEC), [DOI:10.1109/AUPEC52110.2021.9597794]
11. Ghosh, B., Chakraborty, A. K., & Bhowmik, A. R. (2022). Remodelling of an electric distribution network through optimal placement of auto-reclosers to enhance system reliability and efficiency. Arabian Journal for Science and Engineering, 47(3), 3619-3631. [DOI:10.1007/s13369-021-06331-x]
12. Guerra Sánchez, L. G., & Martínez Velasco, J. A. (2018). A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing. AIMS Energy, 6, 764-800. [DOI:10.3934/energy.2018.5.764]
13. Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic algorithm. IEEE transactions on evolutionary computation, 3(4), 287-297. [DOI:10.1109/4235.797971]
14. Jamali, S., & Shateri, H. (2005). Optimal siting of recloser and sectionalizers to reduce non-distributed energy. 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific,
15. Lotfi, H. (2020). Multi‐objective energy management approach in distribution grid integrated with energy storage units considering the demand response program. International Journal of Energy Research, 44(13), 10662-10681. [DOI:10.1002/er.5709]
16. Lotfi, H., & Ghazi, R. (2020a). Multi-objective dynamic distribution feeder reconfiguration along with capacitor allocation using a new hybrid evolutionary algorithm. Energy Systems, 11(3), 779-809. [DOI:10.1007/s12667-019-00333-3]
17. LOTFI, H., & GHAZI, R. (2020b). Optimum energy management strategy in smart distribution networks considering the effect of distributed generators and energy storage units. [DOI:10.1109/PSC49016.2019.9081459]
18. Lotfi, H., Samadi, M., & Dadpour, A. (2016). Optimal capacitor placement and sizing in radial distribution system using an improved Particle Swarm Optimization algorithm. 2016 21st Conference on electrical power distribution networks conference (EPDC), [DOI:10.1109/EPDC.2016.7514799]
19. Moradi, A., & Fotuhi-Firuzabad, M. (2007). Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Transactions on Power Delivery, 23(1), 271-279. [DOI:10.1109/TPWRD.2007.905428]
20. Pombo, A. V., Murta-Pina, J., & Pires, V. F. (2016). A multiobjective placement of switching devices in distribution networks incorporating distributed energy resources. Electric Power Systems Research, 130, 34-45. [DOI:10.1016/j.epsr.2015.08.012]
21. Pregelj, A., Begovic, M., & Rohatgi, A. (2006). Recloser allocation for improved reliability of DG-enhanced distribution networks. IEEE Transactions on power systems, 21(3), 1442-1449. [DOI:10.1109/TPWRS.2006.876649]
22. Sardou, I. G., Banejad, M., Hooshmand, R., & Dastfan, A. (2012). Modified shuffled frog leaping algorithm for optimal switch placement in distribution automation system using a multi-objective fuzzy approach. IET Generation, Transmission & Distribution, 6(6), 493-502. [DOI:10.1049/iet-gtd.2011.0177]
23. Sultan, H., Ansari, S. J., Alam, A., Khan, S., Sarwar, M., & Zaid, M. (2019). Reliability improvement of a radial distribution system with recloser placement. 2019 International Conference on Computing, Power and Communication Technologies (GUCON),
24. Teng, J.-H., & Liu, Y.-H. (2003). A novel ACS-based optimum switch relocation method. IEEE Transactions on power systems, 18(1), 113-120. [DOI:10.1109/TPWRS.2002.807038]
25. Teng, J.-H., & Lu, C.-N. (2002). Feeder-switch relocation for customer interruption cost minimization. IEEE Transactions on Power Delivery, 17(1), 25. 254-59. [DOI:10.1109/61.974215]
26. Velasquez, M. A., Quijano, N., & Cadena, A. I. (2016). Optimal placement of switches on DG enhanced feeders with short circuit constraints. Electric Power Systems Research, 141, 221-232. [DOI:10.1016/j.epsr.2016.08.001]
27. Zeinalzadeh, A., Estebsari, A., & Bahmanyar, A. (2019). Multi-objective optimal placement of recloser and sectionalizer in electricity distribution feeders. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). [DOI:10.1109/EEEIC.2019.8783430]
28. گروه مولفين. ( 1390) .اصلاح و بهينه سازي شبكه هاي برق با استفاده از فن آوري خط گرم فرمان از نزديك فشار متوسط. چاپ اول، شرکت توزیع
29. نیروی برق مشهد.
30. غلامرضاکامیاب.(1385).تعیین تعداد و محل بهینه نصب ریکلوزردر یک فیدر شعاعی فشارمتوسط. یازدهمین کنفرانس شبکه هاي توزیع نیروي برق،کرما


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hajiabadi M E, samadi M, lotfi H. Optimal location of protection devices based on the importance of reliability in the distribution network with an improved genetic algorithm. ieijqp 2022; 11 (3) :19-30
URL: http://ieijqp.ir/article-1-881-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 3 (5-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4645