Prioritization of Microgrid Parameters Considering Uncertainties for Use in Protection Studies
|
Abbas Saberi Noughabi *1 , Saeed Yeganehfar1  |
1- University of Birjand |
|
Abstract: (88 Views) |
The wide variations in fault current magnitude under different operating conditions pose serious challenges to conventional overcurrent protection in microgrid. Considering various uncertainties, conventional overcurrent protection based on standard characteristics, loses its coordination. One solution to this problem is to select a parameter other than current for fault detection and use it in the characteristic curve of microgrid relays. This selection requires studying the intrinsic behavior of measurable parameters at the location of primary and backup relays under various uncertainties and with considering different fault conditions in the microgrid. In this paper, three indices are proposed for selecting the best measurable parameter to be used in the characteristic curve of microgrid relays. These indices determine the impact of each uncertainty on the measurable parameters. The uncertainties considered in this paper include the outage of distributed generation sources, islanding, change in the impedance of the upstream network, change in fault type and fault resistance magnitude. The proposed indices include the Mean Square Error (MSE) index, the index for examining the possibility of the occurrence of coordination constraint violation and the index of minimum difference between the distance of the primary and backup relay curves in the post-uncertainty structure compared to the distance between these curves in the base structure. After calculating the indices, to compare the parameters for selecting the better ones, they are prioritized using the proposed Borda and Weighted Borda comparison methods. The main feature of these comparison methods is that the comparison is performed for each uncertainty separately and in a pairwise manner between the studied parameters. Using sensitivity analysis studies and simulations on the IEEE 14-bus distribution network considered as a microgrid, the effectiveness of the proposed indices and comparison methods has been proven, and the parameters have been prioritized for fault detection and use in the characteristic curve of the mentioned microgrid relays. |
|
Keywords: Microgrid, Uncertainty, Microgrid Parameter Prioritization, Borda Method, Weighted Borda Method, Standardization, Distributed Generation (DG), Fault detection. |
|
|
Type of Study: Research |
Received: 2024/11/13 | Accepted: 2025/07/7 | Published: 2025/08/10
|
|
|
|
|
References |
1. Ataee-Kachoee, A., Hashemi-Dezaki, H., & Ketabi, A. (2023). Optimized adaptive protection coordination of microgrids by dual-setting directional overcurrent relays considering different topologies based on limited independent relays' setting groups. Electric Power Systems Research, 214, 108879 - 108891. [ DOI:10.1016/j.epsr.2022.108879] 2. Chakraborty, S., & Das, S. (2020). Communication-less protection scheme for AC microgrids using hybrid tripping characteristic. Electric Power Systems Research, 187, 106453- 106466. [ DOI:10.1016/j.epsr.2020.106453] 3. Curtis, A. E., Smith, T. A., Ziganshin, B. A., & Elefteriades, J. A. (2016). The mystery of the Z-score. Aorta, 4(04), 124-130. [ DOI:10.12945/j.aorta.2016.16.014] 4. Dawoud, M. A., Ibrahim, D. K., Gilany, M. I., & El'gharably, A. F. (2021a). Proposed application for rate of change of phasor voltage in fault detection and coordination studies in MV distribution networks. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 815-831. [ DOI:10.1007/s40998-020-00402-9] 5. Dawoud, M. A., Ibrahim, D. K., & Gilany, M. I. (2021b). Robust coordination scheme for microgrids protection based on the rate of change of voltage. IEEE Access, 9, 156283-156296. [ DOI:10.1109/ACCESS.2021.3128999] 6. Ghotbi-Maleki, M., Chabanloo, R. M., Zeineldin, H. H., & Miangafsheh, S. M. H. (2020). Design of setting group-based overcurrent protection scheme for active distribution networks using MILP. IEEE Transactions on Smart Grid, 12(2), 1185-1193. [ DOI:10.1109/TSG.2020.3027371] 7. Hosseini, S. A., Abyaneh, H. A., Sadeghi, S. H. H., Razavi, F., & Nasiri, A. (2016). An overview of microgrid protection methods and the factors involved. Renewable and Sustainable Energy Reviews, 64, 174-186. [ DOI:10.1016/j.rser.2016.05.089] 8. Jamali, S., & Borhani-Bahabadi, H. (2018). Protection method for radial distribution systems with DG using local voltage measurements. IEEE Transactions on Power Delivery, 34(2), 651-660. [ DOI:10.1109/TPWRD.2018.2889895] 9. Nascimento, J. P., Brito, N. S., & Souza, B. A. (2020). An adaptive overcurrent protection system applied to distribution systems. Computers & Electrical Engineering, 81, 106545- 106554. [ DOI:10.1016/j.compeleceng.2019.106545] 10. Saber, A., Zeineldin, H. H., El-Fouly, T. H., & Al-Durra, A. (2023). Overcurrent protection coordination with flexible partitioning of active distribution systems into multiple microgrids. International Journal of Electrical Power & Energy Systems, 151, 109205- 109216. [ DOI:10.1016/j.ijepes.2023.109205] 11. Sadeghi, M. H., Dastfan, A., & Damchi, Y. (2021). Robust and adaptive coordination approaches for co-optimization of voltage dip and directional overcurrent relays coordination. International Journal of Electrical Power & Energy Systems, 129, 106850 -106859. [ DOI:10.1016/j.ijepes.2021.106850] 12. Saleh, K. A., Zeineldin, H. H., & El-Saadany, E. F. (2017). Optimal protection coordination for microgrids considering N-1 contingency. IEEE Transactions on Industrial Informatics, 13(5), 2270-2278. [ DOI:10.1109/TII.2017.2682101] 13. Santos, G. P., Tsutsumi, A., & Vieira, J. C. M. (2023). Enhanced voltage relay for AC microgrid protection. Electric Power Systems Research, 220, 109310 -109316. [ DOI:10.1016/j.epsr.2023.109310] 14. Selim, A., Kamel, S., Alghamdi, A. S., & Jurado, F. (2020). Optimal placement of DGs in distribution system using an improved Harris Hawks optimizer based on single-and multi-objective approaches. IEEE Access, 8, 52815-52829. [ DOI:10.1109/ACCESS.2020.2980245] 15. Shabani, M., & Karimi, A. (2018). A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. International Transactions on Electrical Energy Systems, 28(5), 2532-2545. [ DOI:10.1002/etep.2532] 16. Shawon, S. M. R. H., Liang, X., & Janbakhsh, M. (2023). Optimal placement of distributed generation units for microgrid planning in distribution networks. IEEE Transactions on Industry Applications, 59(3), 2785-2795. [ DOI:10.1109/TIA.2023.3236363] 17. Subbaramaiah, K., & Sujatha, P. (2023). Optimal DG unit placement in distribution networks by multi-objective whale optimization algorithm & its techno-economic analysis. Electric Power Systems Research, 214, 108869- 108881. [ DOI:10.1016/j.epsr.2022.108869] 18. Univ. Washington, Seattle, WA, USA, "Power systems test case archive," 2016. [Online]. Available: http://www2.ee.washington.edu/ research/pstca/ 19. Yousaf, M., Jalilian, A., Muttaqi, K. M., & Sutanto, D. (2022). An adaptive overcurrent protection scheme for dual-setting directional recloser and fuse coordination in unbalanced distribution networks with distributed generation. IEEE Transactions on Industry Applications, 58(2), 1831-1842. [ DOI:10.1109/TIA.2022.3146095] 20. Zarour, E., Alasali, F., Alsmadi, O., & El-Naily, N. (2023). A new adaptive protection approach for overcurrent relays using novel nonstandard current-voltage characteristics. Electric Power Systems Research, 216, 109083 -109094. [ DOI:10.1016/j.epsr.2022.109083]
|
|
|