1. مراجع
[1] P. Kundur, Power System Stability and Control: McGraw-Hill, 1994. 2. [2] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Load Frequency Control Strategies: A State-of-the-Art Survey for the Researcher," Energy Conversion and Management, Vol. 50, 2009, pp. 344-353. [ DOI:10.1016/j.enconman.2008.09.014] 3. [3] Y. H. Moon, H. S. Ryu, J. G. Lee, K. B. Song, and M. C. Shin, "Extended Integral Control for Load Frequency Control with the Consideration of Generation-Rate Constraints," International Journal of Electrical Power & Energy Systems, Vol. 24, 2002, pp. 263-269. [ DOI:10.1016/S0142-0615(01)00036-9] 4. [4] J. Talaq and F. Al-Basri, "Adaptive fuzzy gain scheduling for load frequency control," IEEE Trans. on Power and Systems, Vol. 14, 1999, pp. 145-150. [ DOI:10.1109/59.744505] 5. [5] M. Azzam, "Robust Automatic Generation Control," Energy Conversion and Management, Vol. 40, 1999, pp. 1413-1421. [ DOI:10.1016/S0196-8904(99)00040-0] 6. [6] Z. Q. Wang and M. Sznaier, "Robust control design for load frequency control using µ-synthesis," in Southcon/94, Conference Record, Orlando, FL, USA, 1994, pp. 186-190. [ DOI:10.1109/SOUTHC.1994.498097] 7. [7] A. Khodabakhshian and M. Edrisi, "A New Robust PID Load Frequency Controller," Control Engineering Practice, Vol. 16, 2008, pp. 1069-1080. [ DOI:10.1016/j.conengprac.2007.12.003] 8. [8] K. Sabahi, M. A. Nekoui, M. Teshnehlab, M. Aliyari, and M. Mansouri, "Load Frequency Control in Interconnected Power System Using Modified Dynamic Neural Networks," Control & Automation, Vol. 1, 2007. [ DOI:10.1109/MED.2007.4433651] 9. [9] A. Y. Abdelaziz, M. A. L. Badr, and A. H. Younes, "Artificial Neural Network for Load Modeling of an Egyptian Primary Distribution System," Electric Power Components and Systems, Vol. 34, 2006, pp. 1099-1119. [ DOI:10.1080/15325000600630343] 10. [10] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Multi-Stage Fuzzy PID Power System Automatic Generation Controller in Deregulated Environments," Energy Conversion and Management, Vol. 47, 2006, pp. 2829-2845. [ DOI:10.1016/j.enconman.2006.03.031] 11. [11] S. Pothiya, Issarachai Ngamroo," Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units", Energy Conversion and Management, Vol.49, 2008, pp. 2833-2838. [ DOI:10.1016/j.enconman.2008.03.010] 12. [12] R. Hemmati, M. S. Boroujeni, H. Delafkar, A. S. Boroujeni, "PID Controller Adjustment using PSO for Multi Area Load Frequency Control " , Australian Journal of Basic and Applied Sciences,Vol. 5, 2011, pp. 295-302. 13. [13] S.A. Taher, R. Hematti, A. Abdolalipour , H. Tabe ," Optimal Decentralized Load Frequency Control Using HPSO Algorithms in Deregulated Power Systems",American Journal of Applied Sciences,Vol. 5 , 2008, pp.1167-1174. [ DOI:10.3844/ajassp.2008.1167.1174] 14. [14] R.V. Rao, V.J. Savsani, D.P. Vakharia, "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Design, Vol. 43, No. 3, pp. 303-315, 2011. [ DOI:10.1016/j.cad.2010.12.015] 15. [15] Hassan, M.A.M.; Worku, M.Y.; Abido, M.A. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load. Energies 2018, 11, 1109 [ DOI:10.3390/en11051109] 16. [16] Lidula, A.N.W.; Rajapakse, A. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186-202. [ DOI:10.1016/j.rser.2010.09.041] 17. [17] Shahidehpour, M.; Khodayar, M. Cutting Campus Energy Costs with Hierarchical Control: The Economical and Reliable Operation of a Microgrid. IEEE Electrif. Mag. 2013, 1, 40-56. [ DOI:10.1109/MELE.2013.2273994] 18. [18] Che, L.; Shahidehpour, M. DC Microgrids: Economic Operation and Enhancement of Resilience by Hierarchical Control. IEEE Trans. Smart Grid 2014, 5, 2517-2526. [ DOI:10.1109/TSG.2014.2344024] 19. [19] Hassan, M.; Aleem, S.H.E.A.; Ali, S.G.; Abdelaziz, A.Y.; Ribeiro, P.F.; Ali, Z.M. Robust Energy Management and Economic Analysis of Microgrids Considering Different Battery Characteristics. IEEE Access 2020, 8, 54751-54775. [ DOI:10.1109/ACCESS.2020.2981697] 20. [20] Sidong Xian, Xu Feng, "Meerkat optimization algorithm: A new meta-heuristic optimization algorithm for solving constrained engineering problems," Expert Systems with Applications, Volume 231, 120482, 2023. [ DOI:10.1016/j.eswa.2023.120482] 21. [21] Verma, P.; Gupta, P. Proactive stabilization of grid faults in DFIG based wind farm using bridge type fault current limiter based on NMPC. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1-20. [ DOI:10.1080/15567036.2019.1673508] 22. [22] Mohssine, C.; Nasser, T.; Essadki, A. Contribution of Variable Speed Wind Turbine Generator based on DFIG using ADRC and RST Controllers to Frequency Regulation. Int. J. Renew. Energy Res. (IJRER) 2021, 11, 320-331. 23. [23] Ribó-Pérez, D.; Bastida-Molina, P.; Gómez-Navarro, T.; Hurtado-Pérez, E. Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids. Renew. Energy 2020, 157, 874-887. [ DOI:10.1016/j.renene.2020.05.095] 24. [24] Sadat, S.A.; Faraji, J.; Babaei, M.; Ketabi, A. Techno-economic comparative study of hybrid microgrids in eight climate zones of Iran. Energy Sci. Eng. 2020, 8, 3004-3026. [ DOI:10.1002/ese3.720] 25. [25] Borghei, M.; Ghassemi, M. Optimal planning of microgrids for resilient distribution networks. Int. J. Electr. Power Energy Syst. 2021, 128, 106682. [ DOI:10.1016/j.ijepes.2020.106682] 26. [26] Parol, M.; Wójtowicz, T.; Księżyk, K.; Wenge, C.; Balischewski, S.; Arendarski, B. Optimum management of power and energy in low voltage microgrids using evolutionary algorithms and energy storage. Int. J. Electr. Power Energy Syst. 2020, 119, 105886. [ DOI:10.1016/j.ijepes.2020.105886] 27. [27] Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed Control and Communication Strategies in Networked Microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586-2633. [ DOI:10.1109/COMST.2020.3023963] 28. [28] Zhou, B.; Zou, J.; Chung, C.Y.; Wang, H.; Liu, N.; Voropai, N.; Xu, D. Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies. J. Mod. Power Syst. Clean Energy 2021, 9, 463-476. [ DOI:10.35833/MPCE.2019.000237] 29. [29] Mohamed, N.; Aymen, F.; Ali, Z.; Zobaa, A.; Aleem, S.A. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability 2021, 13, 7351. [ DOI:10.3390/su13137351] 30. [30] Bevrani, H.; Habibi, F.; Babahajyani, P.; Watanabe, M.; Mitani, Y. Intelligent Frequency Control in an AC Micro grid:Online PSO-Based Fuzzy Tuning Approach. IEEE Trans. Smart Grid 2012, 3, 1935-1944. [ DOI:10.1109/TSG.2012.2196806] 31. [31] Li, X.; Song, Y.J.; Han, S.B. Frequency control in micro grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 2018, 180, 468-475. [ DOI:10.1016/j.jpowsour.2008.01.092] 32. [32] Mahmoudi, M.; Jafari, H.; Jafari, R. Frequency control of Micro-grid Using State Feedback with Integral Control. In Proceedings of the 20th Conference on Electrical Power Distribution Networks Conference (EPDC), Zahedan, Iran, 28-29 April 2015. [ DOI:10.1109/EPDC.2015.7330464] 33. [33] Mauricio, J.M.; Marano, A.; Gómez-Expósito, A.; Ramos, J.L. Frequency Regulation Contribution Through Variable-Speed Wind Energy Conversion Systems. IEEE Trans. Power Syst. 2009, 24, 173-180. [ DOI:10.1109/TPWRS.2008.2009398] 34. [34] Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. IEEE Trans. Power Syst. 2006, 21, 433-434. [ DOI:10.1109/TPWRS.2005.861956] 35. [35] Ahmadi, R.; Sheikholeslami, A.; Nabavi Niaki, A.; Ranjbar, A. Dynamic participation of doubly fed induction generator in multi-area load frequecy control. Int. Trans. Electr. Energy Syst. 2015, 25, 1130-1147. [ DOI:10.1002/etep.1891] 36. [36] Alayi, R.; Zishan, F.; Mohkam, M.; Hoseinzadeh, S.; Memon, S.; Garcia, D. A Sustainable Energy Distribution Configuration for Microgrids Integrated to the National Grid Using Back-to-Back Converters in a Renewable Power System. Electronics 2021, 10, 1826. [ DOI:10.3390/electronics10151826] 37. [37] Li, H.; Wang, X.; Xiao, J. Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems. Energies 2018, 11, 1686. [ DOI:10.3390/en11071686] 38. [38] Stadler, M.; Siddiqui, A.; Marnay, C.; Aki, H.; Lai, J. Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings. Eur. Trans. Electr. Power 2011, 21, 1291-1309. [ DOI:10.1002/etep.418] 39. مراجع 40. [1] P. Kundur, Power System Stability and Control: McGraw-Hill, 1994. 41. [2] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Load Frequency Control Strategies: A State-of-the-Art Survey for the Researcher," Energy Conversion and Management, Vol. 50, 2009, pp. 344-353. [ DOI:10.1016/j.enconman.2008.09.014] 42. [3] Y. H. Moon, H. S. Ryu, J. G. Lee, K. B. Song, and M. C. Shin, "Extended Integral Control for Load Frequency Control with the Consideration of Generation-Rate Constraints," International Journal of Electrical Power & Energy Systems, Vol. 24, 2002, pp. 263-269. [ DOI:10.1016/S0142-0615(01)00036-9] 43. [4] J. Talaq and F. Al-Basri, "Adaptive fuzzy gain scheduling for load frequency control," IEEE Trans. on Power and Systems, Vol. 14, 1999, pp. 145-150. [ DOI:10.1109/59.744505] 44. [5] M. Azzam, "Robust Automatic Generation Control," Energy Conversion and Management, Vol. 40, 1999, pp. 1413-1421. [ DOI:10.1016/S0196-8904(99)00040-0] 45. [6] Z. Q. Wang and M. Sznaier, "Robust control design for load frequency control using µ-synthesis," in Southcon/94, Conference Record, Orlando, FL, USA, 1994, pp. 186-190. [ DOI:10.1109/SOUTHC.1994.498097] 46. [7] A. Khodabakhshian and M. Edrisi, "A New Robust PID Load Frequency Controller," Control Engineering Practice, Vol. 16, 2008, pp. 1069-1080. [ DOI:10.1016/j.conengprac.2007.12.003] 47. [8] K. Sabahi, M. A. Nekoui, M. Teshnehlab, M. Aliyari, and M. Mansouri, "Load Frequency Control in Interconnected Power System Using Modified Dynamic Neural Networks," Control & Automation, Vol. 1, 2007. [ DOI:10.1109/MED.2007.4433651] 48. [9] A. Y. Abdelaziz, M. A. L. Badr, and A. H. Younes, "Artificial Neural Network for Load Modeling of an Egyptian Primary Distribution System," Electric Power Components and Systems, Vol. 34, 2006, pp. 1099-1119. [ DOI:10.1080/15325000600630343] 49. [10] H. Shayeghi, H. A. Shayanfar, and A. Jalili, "Multi-Stage Fuzzy PID Power System Automatic Generation Controller in Deregulated Environments," Energy Conversion and Management, Vol. 47, 2006, pp. 2829-2845. [ DOI:10.1016/j.enconman.2006.03.031] 50. [11] S. Pothiya, Issarachai Ngamroo," Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units", Energy Conversion and Management, Vol.49, 2008, pp. 2833-2838. [ DOI:10.1016/j.enconman.2008.03.010] 51. [12] R. Hemmati, M. S. Boroujeni, H. Delafkar, A. S. Boroujeni, "PID Controller Adjustment using PSO for Multi Area Load Frequency Control " , Australian Journal of Basic and Applied Sciences,Vol. 5, 2011, pp. 295-302. 52. [13] S.A. Taher, R. Hematti, A. Abdolalipour , H. Tabe ," Optimal Decentralized Load Frequency Control Using HPSO Algorithms in Deregulated Power Systems",American Journal of Applied Sciences,Vol. 5 , 2008, pp.1167-1174. [ DOI:10.3844/ajassp.2008.1167.1174] 53. [14] R.V. Rao, V.J. Savsani, D.P. Vakharia, "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Design, Vol. 43, No. 3, pp. 303-315, 2011. [ DOI:10.1016/j.cad.2010.12.015] 54. [15] Hassan, M.A.M.; Worku, M.Y.; Abido, M.A. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load. Energies 2018, 11, 1109 [ DOI:10.3390/en11051109] 55. [16] Lidula, A.N.W.; Rajapakse, A. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186-202. [ DOI:10.1016/j.rser.2010.09.041] 56. [17] Shahidehpour, M.; Khodayar, M. Cutting Campus Energy Costs with Hierarchical Control: The Economical and Reliable Operation of a Microgrid. IEEE Electrif. Mag. 2013, 1, 40-56. [ DOI:10.1109/MELE.2013.2273994] 57. [18] Che, L.; Shahidehpour, M. DC Microgrids: Economic Operation and Enhancement of Resilience by Hierarchical Control. IEEE Trans. Smart Grid 2014, 5, 2517-2526. [ DOI:10.1109/TSG.2014.2344024] 58. [19] Hassan, M.; Aleem, S.H.E.A.; Ali, S.G.; Abdelaziz, A.Y.; Ribeiro, P.F.; Ali, Z.M. Robust Energy Management and Economic Analysis of Microgrids Considering Different Battery Characteristics. IEEE Access 2020, 8, 54751-54775. [ DOI:10.1109/ACCESS.2020.2981697] 59. [20] Sidong Xian, Xu Feng, "Meerkat optimization algorithm: A new meta-heuristic optimization algorithm for solving constrained engineering problems," Expert Systems with Applications, Volume 231, 120482, 2023. [ DOI:10.1016/j.eswa.2023.120482] 60. [21] Verma, P.; Gupta, P. Proactive stabilization of grid faults in DFIG based wind farm using bridge type fault current limiter based on NMPC. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1-20. [ DOI:10.1080/15567036.2019.1673508] 61. [22] Mohssine, C.; Nasser, T.; Essadki, A. Contribution of Variable Speed Wind Turbine Generator based on DFIG using ADRC and RST Controllers to Frequency Regulation. Int. J. Renew. Energy Res. (IJRER) 2021, 11, 320-331. 62. [23] Ribó-Pérez, D.; Bastida-Molina, P.; Gómez-Navarro, T.; Hurtado-Pérez, E. Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids. Renew. Energy 2020, 157, 874-887. [ DOI:10.1016/j.renene.2020.05.095] 63. [24] Sadat, S.A.; Faraji, J.; Babaei, M.; Ketabi, A. Techno-economic comparative study of hybrid microgrids in eight climate zones of Iran. Energy Sci. Eng. 2020, 8, 3004-3026. [ DOI:10.1002/ese3.720] 64. [25] Borghei, M.; Ghassemi, M. Optimal planning of microgrids for resilient distribution networks. Int. J. Electr. Power Energy Syst. 2021, 128, 106682. [ DOI:10.1016/j.ijepes.2020.106682] 65. [26] Parol, M.; Wójtowicz, T.; Księżyk, K.; Wenge, C.; Balischewski, S.; Arendarski, B. Optimum management of power and energy in low voltage microgrids using evolutionary algorithms and energy storage. Int. J. Electr. Power Energy Syst. 2020, 119, 105886. [ DOI:10.1016/j.ijepes.2020.105886] 66. [27] Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed Control and Communication Strategies in Networked Microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586-2633. [ DOI:10.1109/COMST.2020.3023963] 67. [28] Zhou, B.; Zou, J.; Chung, C.Y.; Wang, H.; Liu, N.; Voropai, N.; Xu, D. Multi-microgrid Energy Management Systems: Architecture, Communication, and Scheduling Strategies. J. Mod. Power Syst. Clean Energy 2021, 9, 463-476. [ DOI:10.35833/MPCE.2019.000237] 68. [29] Mohamed, N.; Aymen, F.; Ali, Z.; Zobaa, A.; Aleem, S.A. Efficient Power Management Strategy of Electric Vehicles Based Hybrid Renewable Energy. Sustainability 2021, 13, 7351. [ DOI:10.3390/su13137351] 69. [30] Bevrani, H.; Habibi, F.; Babahajyani, P.; Watanabe, M.; Mitani, Y. Intelligent Frequency Control in an AC Micro grid:Online PSO-Based Fuzzy Tuning Approach. IEEE Trans. Smart Grid 2012, 3, 1935-1944. [ DOI:10.1109/TSG.2012.2196806] 70. [31] Li, X.; Song, Y.J.; Han, S.B. Frequency control in micro grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 2018, 180, 468-475. [ DOI:10.1016/j.jpowsour.2008.01.092] 71. [32] Mahmoudi, M.; Jafari, H.; Jafari, R. Frequency control of Micro-grid Using State Feedback with Integral Control. In Proceedings of the 20th Conference on Electrical Power Distribution Networks Conference (EPDC), Zahedan, Iran, 28-29 April 2015. [ DOI:10.1109/EPDC.2015.7330464] 72. [33] Mauricio, J.M.; Marano, A.; Gómez-Expósito, A.; Ramos, J.L. Frequency Regulation Contribution Through Variable-Speed Wind Energy Conversion Systems. IEEE Trans. Power Syst. 2009, 24, 173-180. [ DOI:10.1109/TPWRS.2008.2009398] 73. [34] Morren, J.; de Haan, S.W.H.; Kling, W.L.; Ferreira, J.A. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control. IEEE Trans. Power Syst. 2006, 21, 433-434. [ DOI:10.1109/TPWRS.2005.861956] 74. [35] Ahmadi, R.; Sheikholeslami, A.; Nabavi Niaki, A.; Ranjbar, A. Dynamic participation of doubly fed induction generator in multi-area load frequecy control. Int. Trans. Electr. Energy Syst. 2015, 25, 1130-1147. [ DOI:10.1002/etep.1891] 75. [36] Alayi, R.; Zishan, F.; Mohkam, M.; Hoseinzadeh, S.; Memon, S.; Garcia, D. A Sustainable Energy Distribution Configuration for Microgrids Integrated to the National Grid Using Back-to-Back Converters in a Renewable Power System. Electronics 2021, 10, 1826. [ DOI:10.3390/electronics10151826] 76. [37] Li, H.; Wang, X.; Xiao, J. Differential Evolution-Based Load Frequency Robust Control for Micro-Grids with Energy Storage Systems. Energies 2018, 11, 1686. [ DOI:10.3390/en11071686] 77. [38] Stadler, M.; Siddiqui, A.; Marnay, C.; Aki, H.; Lai, J. Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings. Eur. Trans. Electr. Power 2011, 21, 1291-1309. [ DOI:10.1002/etep.418]
|