1. Abad, G., Lopez, J., Rodríguez, M., Marroyo, L., & Iwanski, G. (2011). Doubly fed induction machine: modeling and control for wind energy generation (Vol. 85): John Wiley & Sons. [ DOI:10.1002/9781118104965] 2. Ademi, S., & Jovanovic, M. (2016). Control of doubly-fed reluctance generators for wind power applications. Renewable Energy 85, 171-180. [ DOI:10.1016/j.renene.2015.06.040] 3. Aghakashkooli, M., & Jovanovic, M. G. (2022). A Dual Observer for Parameter-Free Encoderless Control of Doubly-Fed Reluctance Generators. IEEE Transactions on Industrial Electronics 70(4), 3461-3470. [ DOI:10.1109/TIE.2022.3179555] 4. Agrawal, S., Chouhdry, H., Mukherjee, D., & Banerjee, A. (2023). Modeling and Design Optimization of Rotor Flux-Barriers in a Brushless Doubly-Fed Reluctance Machine. IEEE Transactions on Industry Applications [ DOI:10.1109/TEC.2022.3230628] 5. Agrawal, S., Chouhdry, H., Mukherjee, D., & Banerjee, A. (2024). Optimal Torque Angle for a Switched Brushless Doubly Fed Reluctance Machine. IEEE Transactions on Industrial Electronics [ DOI:10.1109/TIE.2024.3423438] 6. Attya, A., Ademi, S., Jovanović, M., & Anaya-Lara, O. (2018). Frequency support using doubly fed induction and reluctance wind turbine generators. International Journal of Electrical Power & Energy Systems 101, 403-414. [ DOI:10.1016/j.ijepes.2018.04.007] 7. Betz, R. (2021). Comparison of Rotor Side Converter Protection for DFIGs and Brushless Doubly Fed Reluctance Machines under Fault Conditions. Paper presented at the 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe). [ DOI:10.23919/EPE21ECCEEurope50061.2021.9570194] 8. Betz, R., & Jovanovic, M. (1998). Introduction to brushless doubly fed reluctance machines-the basic equations: tech. rep., Dept. Elec. Energy Conversion, Aalborg University, Denmark. 9. Betz, R. E., & Jovanovic, M. G. (2002). Theoretical analysis of control properties for the brushless doubly fed reluctance machine. IEEE Transactions on Energy Conversion 17(3), 332-339. doi: 10.1109/TEC.2002.801997 [ DOI:10.1109/TEC.2002.801997] 10. Bouafia, A., Gaubert, J. P., & Krim, F. (2010). Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Transactions on Power Electronics 25(1), 228-236. doi: 10.1109/TPEL.2009.2028731 [ DOI:10.1109/TPEL.2009.2028731] 11. Chaal, H., & Jovanovic, M. (2012). Power control of brushless doubly-fed reluctance drive and generator systems. Renewable Energy 37(1), 419-425. [ DOI:10.1016/j.renene.2011.06.011] 12. Chaal, H., & Jovanovic, M. (2012). Practical implementation of sensorless torque and reactive power control of doubly fed machines. IEEE Transactions on Industrial Electronics 59(6), 2645-2653. doi: 10.1109/TIE.2011.2161065 [ DOI:10.1109/TIE.2011.2161065] 13. Das, S., Karnik, N., & Santoso, S. (2011). Time-domain modeling of tower shadow and wind shear in wind turbines. ISRN Renewable Energy, 2011. [ DOI:10.5402/2011/890582] 14. Dolan, D. S. L., & Lehn, P. W. (2006). Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow. IEEE Transactions on Energy Conversion 21(3), 717-724. doi: 10.1109/TEC.2006.874211 [ DOI:10.1109/TEC.2006.874211] 15. Iqbal, A., Lamine, A., Ashraf, I., & Mohibullah. (2006). Matlab/simulink model of space vector PWM for three-phase voltage source inverter. Paper presented at the 41st International Universities Power Engineering Conference, Newcastle-upon-Tyne. [ DOI:10.1109/UPEC.2006.367646] 16. Jiawei, C., Jie, C., & Chunying, G. (2013). New overall power control strategy for variable-speed fixed-pitch wind turbines within the whole wind velocity range. IEEE Transactions on Industrial Electronics 60(7), 2652-2660. doi: 10.1109/TIE.2012.2196901 [ DOI:10.1109/TIE.2012.2196901] 17. Jovanovic, M. G., Jian, Y., & Levi, E. (2006). Encoderless direct torque controller for limited speed range applications of brushless doubly fed reluctance motors. IEEE Transactions on Industry Applications 42(3), 712-722. doi: 10.1109/TIA.2006.872955 [ DOI:10.1109/TIA.2006.872955] 18. Kashkooli, M. A., & Jovanović, M. G. (2021). Sensorless adaptive control of brushless doubly-fed reluctance generators for wind power applications. Renewable Energy 177, 932-941. [ DOI:10.1016/j.renene.2021.05.154] 19. Kashkooli, M. A., & Jovanović, M. G. (2022). Parameter independent control of doubly-fed reluctance wind generators without a rotor position sensor. International Journal of Electrical Power & Energy Systems 137, 107778. [ DOI:10.1016/j.ijepes.2021.107778] 20. Kiran, K., & Das, S. (2020). Variable speed operation of brushless doubly fed reluctance machine drive using model predictive current control technique. IEEE Transactions on Power Electronics 35(8), 8396-8404. [ DOI:10.1109/TPEL.2020.2964007] 21. Kumar, M., & Das, S. (2021). Speed Control of Brushless Doubly-fed Reluctance Generator under MTPIA and UPPF Conditions for Wind Power Application. Paper presented at the 2021 International Conference on Computational Performance Evaluation (ComPE). [ DOI:10.1109/ComPE53109.2021.9751877] 22. Kumar, M., Das, S., & Kiran, K. (2018). Sensorless speed estimation of brushless doubly-fed reluctance generator using active power based MRAS. IEEE Transactions on Power Electronics 34(8), 7878-7886. [ DOI:10.1109/TPEL.2018.2882473] 23. Liang, S., Jin, S., & Shi, L. (2022). Research on Control Strategy of Grid-connected Brushless Doubly-fed Wind Power System Based on Virtual Synchronous Generator Control. CES Transactions on Electrical Machines and Systems, 6(4), 404-412. [ DOI:10.30941/CESTEMS.2022.00052] 24. Long, D., Wen, H., Shuai, Z., & Ma, Z. (2023). Evolution and optimization of a brushless doubly‐fed machine with an asymmetrical reluctance and magductance rotor. IET Renewable Power Generation 17(12), 2950-2963. [ DOI:10.1049/rpg2.12802] 25. Moazen, M., Kazemzadeh, R., & Azizian, M.-R. (2016a). Model-based predictive direct power control of brushless doubly fed reluctance generator for wind power applications. Alexandria Engineering Journal 55(3), 2497-2507. [ DOI:10.1016/j.aej.2016.08.004] 26. Moazen, M., Kazemzadeh, R., & Azizian, M. R. (2016b). Power control of BDFRG variable-speed wind turbine system covering all wind velocity ranges. International Journal of Renewable Energy Research, 6(2), 477-486. 27. Monfared, M., Madadi Kojabadi, H., & Rastegar, H. (2008). Static and dynamic wind turbine simulator using a converter controlled dc motor. Renewable Energy 33(5), 906-913. [ DOI:10.1016/j.renene.2007.06.007] 28. Mousa, M. G., Allam, S., & Rashad, E. M. (2016). Maximum Wind-Power Extraction under Minimum Converter Current of a Grid-Connected Wind-Driven Brushless Doubly-Fed Reluctance Generator. signs, 2, 1. [ DOI:10.1080/1448837X.2017.1410964] 29. Oualah, O., Kerdoun, D., & Boumassata, A. (2023). Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system. Electrical Engineering & Electromechanics(2), 86-92. [ DOI:10.20998/2074-272X.2023.2.13] 30. Rihan, M., Nasrallah, M., Hasanin, B., & El-Shahat, A. (2022). A Proposed Controllable Crowbar for a Brushless Doubly-Fed Reluctance Generator, a Grid-Integrated Wind Turbine. Energies, 15(11), 3894. [ DOI:10.3390/en15113894] 31. Shi, L., & Jin, S. (2023). Direct torque control and space vector modulation‐based direct torque control of brushless doubly‐fed reluctance machines. IET Electric Power Applications [ DOI:10.1049/elp2.12324] 32. Taluo, T., Ristić, L., Agha-Kashkooli, M.-R., & Jovanović, M. (2024). Hardware-in-the-loop testing of brushless doubly fed reluctance generator under unbalanced grid voltage conditions. International Journal of Electrical Power & Energy Systems 158, 109940. [ DOI:10.1016/j.ijepes.2024.109940] 33. Valenciaga, F., & Evangelista, C. A. (2010). 2-sliding active and reactive power control of a wind energy conversion system. IET Control Theory & Applications, 4(11), 2479-2490. doi: 10.1049/iet-cta.2009.0437 [ DOI:10.1049/iet-cta.2009.0437] 34. Yang, X., Qin, Y., Bai, J., Zhan, J., Li, Y., & Hao, S. (2024). Passive Control for Brushless Doubly-Fed Reluctance Generator Under Unbalanced Grid Voltages. IEEE Access. [ DOI:10.1109/ACCESS.2024.3423800] 35. Yassin, E. F., Yassin, H. M., Hemeida, A., & Hallouda, M. M. (2022). Real Time Simulation of Brushless Doubly Fed Reluctance Generator Driven Wind Turbine Considering Iron Saturation. IEEE Access, 10, 9925-9934. [ DOI:10.1109/ACCESS.2022.3144600] 36. Zhang, F., Yu, S., Wang, Y., Jin, S., & Jovanovic, M. G. (2018). Design and performance comparisons of brushless doubly fed generators with different rotor structures. IEEE Transactions on Industrial Electronics 66(1), 631-640. [ DOI:10.1109/TIE.2018.2811379] 37. داودی م؛ محمدقلیها م، (1399). پیش بینی توان خروجی مزارع بادی براساس الگوریتمهای فازی با هدف کاهش تاثیر عدم قطعیت انرژی باد، نشریه کیفیت و بهره وری صنعت برق ایران، ۹(۴)، صص 34-24. 38. شاه آبادی ا؛ کرمی ملائی ع؛ شجاعی ع؛ حلاجی م؛ صافحیان ج، (1402). ردیابی نقطه حداکثر توان توربینهای بادی با الگوریتم رقابت استعماری مبتنی بر آشوب، نشریه کیفیت و بهره وری صنعت برق ایران، ۱۲(۲)، صص 89-82. 39. صفایی آ؛ حسینیان س؛ عسکریان ابیانه ح، (1396). بهبود قابلیت گذر از خطای توربین بادی دارای ژنراتور القایی تغذیه دوگانه در ریز شبکه، نشریه کیفیت و بهره وری صنعت برق ایران، ۶ (۲)، صص 45-34. 40. فرجامی ف؛ محمدزاده ا؛ احمدیان ع؛ شجاع س، (1399). طراحی کنترلکننده فازی PI^λ برای کنترل زاویه گام در توربین بادی سرعت متغیر، نشریه کیفیت و بهره وری صنعت برق ایران، ۹(۱)، صص 15-1. 41. کمرزرین م؛ رفان م؛ امیری پ، (۱۴۰۱). تشخیص عیب و کنترل تحمل پذیر خطا در مبدل پشت به پشت DFIG، نشریه کیفیت و بهره وری صنعت برق ایران، ۱۱(۱)، صص 138-126.
|