1. [1] D. Linaro, F. Bizzarri, D. del Giudice, C. Pisani, G. M. Giannuzzi, S. Grillo, and A. M. Brambilla, "Continuous estimation of power system inertia using convolutional neural networks", Nature Communications, 14 (1), 2023. [ DOI:10.1038/s41467-023-40192-2] 2. [2] Y. Bian, H. Wyman-Pain, F. Li, R. Bhakar, S. Mishra, and N. P. Padhy, "Demand side contributions for system inertia in the GB power system," IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3521-3530, 2017. [ DOI:10.1109/TPWRS.2017.2773531] 3. [3] D. Linaro, et.al, "Continuous estimation of power system inertia using convolutional neural networks", Nature Communications, 14 (1), 2023. [ DOI:10.1038/s41467-023-40192-2] 4. [4] B. Wang, D. Yang, G. Cai, J. Ma, Z. Chen, and L. Wang, "Online inertia estimation using electromechanical oscillation modal extracted from synchronized ambient data," J. Mod. Power Syst. Clean Energy, 2020. 5. [5] R. K. Panda, A. Mohapatra, and S. C. Srivastava, "Online estimation of system inertia in a power network utilizing synchrophasor measurements," IEEE Trans. Power Syst., vol. 35, no. 4, pp. 3122-3132, 2019. [ DOI:10.1109/TPWRS.2019.2958603] 6. [6] K. Tuttelberg, J. Kilter, D. Wilson, and K. Uhlen, "Estimation of power system inertia from ambient wide area measurements," IEEE Trans. Power Syst., vol. 33, no. 6, pp. 7249-7257, 2018. [ DOI:10.1109/TPWRS.2018.2843381] 7. [7] R. K. Panda, A. Mohapatra, and S. C. Srivastava, "Application of indirect adaptive control philosophy for inertia estimation," in 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), pp. 478-483, 2019. [ DOI:10.1109/GTDAsia.2019.8715940] 8. [8] P. Du and J. Matevosyan, "Forecast system inertia condition and its impact to integrate more renewables," IEEE Trans. Smart Grid, vol. 9, no. 2, pp. 1531-1533, 2017. [ DOI:10.1109/TSG.2017.2662318] 9. [9] J. Schiffer, P. Aristidou, and R. Ortega, "Online estimation of power system inertia using dynamic regressor extension and mixing," IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4993-5001, 2019. [ DOI:10.1109/TPWRS.2019.2915249] 10. [10] K. Prabhakar, S. K. Jain and P. K. Padhy,"Inertia estimation in modern power system: A comprehensive review", Electric Power Systems Research, Volume 211, October 2022. [ DOI:10.1016/j.epsr.2022.108222] 11. [11] P. S. Kundur and O. P. Malik, Power system stability and control. McGraw-Hill Education, 2022. 12. [12] M. Jan-E-Alam, "A Study on the Presence of Inter-Area Oscillation Mode in Bangladesh Power System Network," J. Electr. Eng., vol. 36, no. 2, pp. 16-21, 2009. 13. [13] L. Mariotto, H. Pinheiro, G. Cardoso, A. P. Morais, and M. R. Muraro, "Power systems transient stability indices: an algorithm based on equivalent clusters of coherent generators," IET Gener. Transm. Distrib., vol. 4, no. 11, pp. 1223-1235, 2010. [ DOI:10.1049/iet-gtd.2009.0647] 14. [14] T. L. Baldwin, L. Mili, and A. G. Phadke, "Dynamic ward equivalents for transient stability analysis," IEEE Trans. Power Syst., vol. 9, no. 1, pp. 59-67, 1994. [ DOI:10.1109/59.317557] 15. [15] J.F. Hauer, C.J. Demeure, and L.L. Scharf, Comparison of Prony and eigenvalues analysis for power system control design, IEEE Trans. Power Systems 8 (3), p.p. 964- 971, 1993. [ DOI:10.1109/59.260905] 16. [16] T. Mohamed, M. M. Kezunovic, Z. Obradovic, Y. Hu and Z. Cheng, "Application of Machine Learning to Oscillation Detection using PMU Data based on Prony Analysis", IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Serbia, 2022. [ DOI:10.1109/ISGT-Europe54678.2022.9960589] 17. [17] P. Ray, "Power system low frequency oscillation mode estimation using wide area measurement systems," Eng. Sci. Technol. an Int. J., vol. 20, no. 2, pp. 598-615, 2017. [ DOI:10.1016/j.jestch.2016.11.019] 18. [18] G. Cai, B. Wang, D. Yang, Z. Sun, and L. Wang, "Inertia estimation based on observed electromechanical oscillation response for power systems," IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4291-4299, 2019. [ DOI:10.1109/TPWRS.2019.2914356]
|