[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 2 (8-2023) ::
ieijqp 2023, 12(2): 71-81 Back to browse issues page
Traveling wave - based transmission line fault location using maathematical morphology without synchronization system and line parameters
Moslem Salehi *1 , Ali akbar Moti birjandi2
1- Technical and Vocational University (TVU)
2- Shahid Rajaee Teacher Training University
Abstract:   (1187 Views)

Accurate fault location in a transmission line system is very important for electric utilities in order to quickly diagnose the location of the fault. Using a suitable technique for accurate fault location effectively reduces the time of fault recovery and system operation cost during maintenance. As a result, the reliability and quality of electricity delivery is improved and the economic losses caused by line outages are reduced. In this paper, an accurate two-terminal traveling wave-based fault location method for transmission lines is proposed. In this method, based on the arrival time of the first and second traveling waves caused by the short circuit fault, which are measured separately at both terminals of the transmission line, fault location and fault inception time are determined. The proposed algorithm does not need to synchronize data, transmission line  parameters, and traveling wave speed, which are sources of error in traveling wave-based fault location methods.  In order to better analyse fault-induced transient signals and detects the arrival time of travelling waves, mathematicl morphology filter (MMF) is used. Several faults on a typical 400 kV, 200 km transmission line were simulated using EMTP  and MATLAB programs. The simulation results verified the proposed algorithm is able to accurately locate faults on transmission line. Also, the proposed method is independent of fault conditions shch as fault impedance, fault type, fault inception time and fault location.
 

Article number: 6
Keywords: Fault location, transmission lines, traveling wave, mathematicl morphology
Full-Text [PDF 1171 kb]   (400 Downloads)    
Type of Study: Research |
Received: 2022/11/8 | Accepted: 2023/04/30 | Published: 2023/08/1
References
1. Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: Theory and application. IEEE Access, 2, 537-557. [DOI:10.1109/ACCESS.2014.2323353]
2. Hamidi, R. J., & Livani, H. (2017). Traveling-Wave-Based Fault-Location Algorithm for Hybrid Multiterminal Circuits. IEEE Trans. on Power Del, 32(1), 135-144. [DOI:10.1109/TPWRD.2016.2589265]
3. Heijmans, H. J. A. M. (1994). Morphological Image Operators. New York, NY, USA: Academic.
4. Kawady, T., & Stenzel, J. (2003). A practical fault location approach for double circuit transmission lines using single end data. IEEE Trans. Power Del, 18(4), 1166-1173. [DOI:10.1109/TPWRD.2003.817503]
5. Korkali, M., & Abur, A. (2013). Optimal deployment of widearea synchronized measurements for fault-location observability. IEEE Trans Power Syst, 28(1), 482-489. [DOI:10.1109/TPWRS.2012.2197228]
6. Lee, H., & Mousa, A. (1996). GPS travelling wave fault locator systems: investigation into the anomalous measurements related to lightning strikes. IEEE Trans. Power Del, 11(3), 1214 -1223. [DOI:10.1109/61.517474]
7. Lin, X., Weng, H., & Wang, B. (2009). A generalize method to improve the location accuracy of the single-ended sampled data and lumped parameter model based fault locators. Int. J. Electr. Power Energy Syst, 31(5), 201-205. [DOI:10.1016/j.ijepes.2009.01.003]
8. Lopes, F.V. (2016). Settings-free traveling-wave-based earth fault location using unsynchronized two-terminal data. IEEE Trans. Power Del, 31(5), 2296-2298. [DOI:10.1109/TPWRD.2016.2551367]
9. Lopes, F. V., Dantas, K. M., Silva, K. M., & Costa, F. B. (2018). Accurate two-terminal transmission line fault location using traveling waves. IEEE Trans. Power Del, 33(2), 873-880. [DOI:10.1109/TPWRD.2017.2711262]
10. Lopes, F. V., Lima, P., Ribeiro, J. P. G., Tiago, R. H., Silva, K. M., Leite Jr, E. J. S., Neves, W. L. A., & Rocha, G. (2019). Practical methodology for two-terminal traveling wave-based fault location eliminating the need for line parameters and time synchronization. IEEE Trans. Power Del, 34(6), 2123-2134. [DOI:10.1109/TPWRD.2019.2891538]
11. Naidu, O. D., & Pradhan, A. K. (2018). A traveling wave-based fault location method using unsynchronized current measurements. IEEE Trans. Power Del, 34(2), 505-513. [DOI:10.1109/TPWRD.2018.2875598]
12. Naidu, O.D., & Pradhan, A. K. (2021). Precise Traveling Wave Based Transmission Line Fault Location Method Using Single-Ended Data. IEEE Trans.Ind. Inform, 17(8), 5197 - 5207. [DOI:10.1109/TII.2020.3027584]
13. Namdari, F., & Salehi, M. (2017). A high-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology. IEEE Trans. Power Del, 32(1), 246-53. [DOI:10.1109/TPWRD.2016.2571341]
14. Peng, R. N., Zhou, L., Meng, X., Hu,Y., Shen,Y., & Xue, X. (2020). Fault Location Method in Power Network by Applying Accurate Information of Arrival Time Differences of Modal Traveling Waves. IEEE Trans. Ind. Inform, 16(5), 3124-3132. [DOI:10.1109/TII.2019.2903267]
15. Pereira, C.E.M., & Zanetta, Jr., L.C. (2004). Fault location in transmission lines using one-terminal post fault voltage data. IEEE Trans. Power Del, 19(2), 570- 575. [DOI:10.1109/TPWRD.2004.824391]
16. Poudineh-Ebrahimi, F., & Ghazizadeh-Ahsaee, M. (2018) Accurate and comprehe nsive fault location algorithm for two-terminal transmission lines. IET Gen., Transm. Distrib, 12(19), 4334 - 4340. [DOI:10.1049/iet-gtd.2018.6084]
17. Rui, L., Fei, W., Guoqing, F., Xue, X., & Ruib, Z. (2016). A general fault location method in complex power grid based on wide-area traveling wave data acquisition. Int. J. Elect. Power Energy Syst, 83, 213-218. [DOI:10.1016/j.ijepes.2016.04.021]
18. Saha, M. M., Izykowski, J., & Rosolowski, E. (2010). Fault Location on Power Networks, ser. Power Systems. London: Ed. Springer. [DOI:10.1007/978-1-84882-886-5]
19. Salehi, M., Birjandi, A. A. M., & Dong, X. (2021). Determining minimum number and placement of fault detectors in transmission network for fault location observability. Int. J. Electr. Power Eng, 124, 106386. [DOI:10.1016/j.ijepes.2020.106386]
20. Salehi, M., & Namdari, F. (2018) Fault location on branched networks using mathematical morphology. IET Gen., Transm. Distrib, 12(1), 207-16. [DOI:10.1049/iet-gtd.2017.0598]
21. Schweitzer III, E. O. (1990, Oct). A review of impedance-based fault locating experience. 14th Annual Iowa-Nebraska System Protection Seminar, Omaha, Nebraska.
22. Spoor, D., & Zhu, J. G. (2006). Improved single-ended traveling-wave fault location algorithm based on experience with conventional substation transducers. IEEE Trans. Power Del, 23(3), 1714-1720. [DOI:10.1109/TPWRD.2006.878091]
23. Wang, J., & Zhang, Y. (2022). Traveling Wave Propagation Characteristic-Based LCC-MMC Hybrid HVDC Transmission Line Fault Location Method. IEEE Trans. Power Del, 37(1), 208-218. [DOI:10.1109/TPWRD.2021.3055840]
24. Wu, Q. H. . Zhang, J. F., & Zhang, D. J. (2003). Ultra-high-speed directional protection of transmission lines using mathematical morphology. IEEE Trans. Power Del, 18(4), 1127-1133. [DOI:10.1109/TPWRD.2003.817513]
25. Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: Theory and application. IEEE Access, 2, 537-557. [DOI:10.1109/ACCESS.2014.2323353]
26. Gopakumar, P., Reddy, M. J. B, & Mohanta, D. K. (2015). Adaptive fault identification and classification methodology for smart power grids using synchronous phasor angle measurements, IET Gener. Transm. Distrib., 9(2), 133-145. [DOI:10.1049/iet-gtd.2014.0024]
27. Guillen, D., Paternina, M.R.A., Zamora, A., et al. (2015). Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm. IET Gener. Transm. Distrib., 9(15), 2294-2302. [DOI:10.1049/iet-gtd.2014.1064]
28. Hamidi, R. J., & Livani, H. (2017). Traveling-Wave-Based Fault-Location Algorithm for Hybrid Multiterminal Circuits. IEEE Trans. on Power Del, 32(1), 135-144. [DOI:10.1109/TPWRD.2016.2589265]
29. Heijmans, H. J. A. M. (1994). Morphological Image Operators. New York, NY, USA: Academic.
30. Kawady, T., & Stenzel, J. (2003). A practical fault location approach for double circuit transmission lines using single end data. IEEE Trans. Power Del, 18(4), 1166-1173. [DOI:10.1109/TPWRD.2003.817503]
31. Korkali, M., & Abur, A. (2013). Optimal deployment of widearea synchronized measurements for fault-location observability. IEEE Trans Power Syst, 28(1), 482-489. [DOI:10.1109/TPWRS.2012.2197228]
32. Lee, H., & Mousa, A. (1996). GPS travelling wave fault locator systems: investigation into the anomalous measurements related to lightning strikes. IEEE Trans. Power Del, 11(3), 1214 -1223. [DOI:10.1109/61.517474]
33. Lin, X., Weng, H., & Wang, B. (2009). A generalize method to improve the location accuracy of the single-ended sampled data and lumped parameter model based fault locators. Int. J. Electr. Power Energy Syst, 31(5), 201-205. [DOI:10.1016/j.ijepes.2009.01.003]
34. Lopes, F.V. (2016). Settings-free traveling-wave-based earth fault location using unsynchronized two-terminal data. IEEE Trans. Power Del, 31(5), 2296-2298. [DOI:10.1109/TPWRD.2016.2551367]
35. Lopes, F. V., Dantas, K. M., Silva, K. M., & Costa, F. B. (2018). Accurate two-terminal transmission line fault location using traveling waves. IEEE Trans. Power Del, 33(2), 873-880. [DOI:10.1109/TPWRD.2017.2711262]
36. Lopes, F. V., Lima, P., Ribeiro, J. P. G., Tiago, R. H., Silva, K. M., Leite Jr, E. J. S., Neves, W. L. A., & Rocha, G. (2019). Practical methodology for two-terminal traveling wave-based fault location eliminating the need for line parameters and time synchronization. IEEE Trans. Power Del, 34(6), 2123-2134. [DOI:10.1109/TPWRD.2019.2891538]
37. Naidu, O. D., & Pradhan, A. K. (2018). A traveling wave-based fault location method using unsynchronized current measurements. IEEE Trans. Power Del, 34(2), 505-513. [DOI:10.1109/TPWRD.2018.2875598]
38. Naidu, O.D., & Pradhan, A. K. (2021). Precise Traveling Wave Based Transmission Line Fault Location Method Using Single-Ended Data. IEEE Trans.Ind. Inform, 17(8), 5197 - 5207. [DOI:10.1109/TII.2020.3027584]
39. Namdari, F., & Salehi, M. (2017). A high-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology. IEEE Trans. Power Del, 32(1), 246-53. [DOI:10.1109/TPWRD.2016.2571341]
40. زیرنویس‌ها
41. Ngu, E. E., & Ramar, K. (2011). A combined impedance and traveling wave based fault location method for the multi-terminal transmission line. Int. J. Elect. Power Energy Syst, 33(10), 1767-1775. [DOI:10.1016/j.ijepes.2011.08.020]
42. Peng, R. N., Zhou, L., Meng, X., Hu,Y., Shen,Y., & Xue, X. (2020). Fault Location Method in Power Network by Applying Accurate Information of Arrival Time Differences of Modal Traveling Waves. IEEE Trans. Ind. Inform, 16(5), 3124-3132. [DOI:10.1109/TII.2019.2903267]
43. Pereira, C.E.M., & Zanetta, Jr., L.C. (2004). Fault location in transmission lines using one-terminal post fault voltage data. IEEE Trans. Power Del, 19(2), 570- 575. [DOI:10.1109/TPWRD.2004.824391]
44. Poudineh-Ebrahimi, F., & Ghazizadeh-Ahsaee, M. (2018). Accurate and comprehe nsive fault location algorithm for two-terminal transmission lines. IET Gen., Transm. Distrib., 12(19), 4334 - 4340. [DOI:10.1049/iet-gtd.2018.6084]
45. Rafinia, A., & Moshtagh, J. (2014). A new approach to fault location in three-phase underground distribution system using combination of wavelet analysis with ANN and FLS. Int. J. Elect. Power Energy Syst, 55, 261-274. [DOI:10.1016/j.ijepes.2013.09.011]
46. Rathore, B., & Shaik, A.G. (2017). Wavelet-alienation based transmission line protection scheme. IET Gen., Transm. Distrib., 11(4), 995-1003. [DOI:10.1049/iet-gtd.2016.1022]
47. Rui, L., Fei, W., Guoqing, F., Xue, X., & Ruib, Z. (2016). A general fault location method in complex power grid based on wide-area traveling wave data acquisition. Int. J. Elect. Power Energy Syst, 83, 213-218. [DOI:10.1016/j.ijepes.2016.04.021]
48. Saha, M. M., Izykowski, J., & Rosolowski, E. (2010). Fault Location on Power Networks, ser. Power Systems. London: Ed. Springer. [DOI:10.1007/978-1-84882-886-5]
49. Salehi, M., Birjandi, A. A. M., & Dong, X. (2021). Determining minimum number and placement of fault detectors in transmission network for fault location observability. Int. J. Electr. Power Eng, 124, 106386. [DOI:10.1016/j.ijepes.2020.106386]
50. Salehi, M., & Namdari, F. (2018) Fault location on branched networks using mathematical morphology. IET Gen., Transm. Distrib., 12(1), 207-216. [DOI:10.1049/iet-gtd.2017.0598]
51. Schweitzer III, E. O. (1990, Oct). A review of impedance-based fault locating experience. 14th Annual Iowa-Nebraska System Protection Seminar, Omaha, Nebraska.
52. Silva, M. da., Coury, D.V., Oleskovicz, M., & Segatto, E.C. (2010). Combined solution for fault location in three-terminal lines base on wavelet transforms. IET Gen., Transm. Distrib., 4(1), 94-103. [DOI:10.1049/iet-gtd.2009.0249]
53. Spoor, D., & Zhu, J. G. (2006). Improved single-ended traveling-wave fault location algorithm based on experience with conventional substation transducers. IEEE Trans. Power Del, 23(3), 1714-1720. [DOI:10.1109/TPWRD.2006.878091]
54. Wang, J., & Zhang, Y. (2022). Traveling Wave Propagation Characteristic-Based LCC-MMC Hybrid HVDC Transmission Line Fault Location Method. IEEE Trans. Power Del, 37(1), 208-218. [DOI:10.1109/TPWRD.2021.3055840]
55. Wu, Q. H. . Zhang, J. F., & Zhang, D. J. (2003). Ultra-high-speed directional protection of transmission lines using mathematical morphology. IEEE Trans. Power Del, 18(4), 1127-1133. [DOI:10.1109/TPWRD.2003.817513]
56. Zhang, F., Liu, Q., Liu, Y., Tong, N., Chen, S., & Zhang, C. (2020). Novel fault location method for power systems based on attention mechanism and double structure GRU neural network. IEEE Access 8, 75237-75248. [DOI:10.1109/ACCESS.2020.2988909]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

salehi M, moti birjandi A A. Traveling wave - based transmission line fault location using maathematical morphology without synchronization system and line parameters. ieijqp 2023; 12 (2) : 6
URL: http://ieijqp.ir/article-1-940-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (8-2023) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.22 seconds with 40 queries by YEKTAWEB 4704