1. [1] H. Zhou, K. Yuan and C. Lei, "Security Constrained Unit Commitment Based on Modified Line Outage Distribution Factors," IEEE Access, vol. 10, pp. 25258-25266, 2022, doi: 10.1109/ACCESS.2022.3156081. [ DOI:10.1109/ACCESS.2022.3156081] 2. [2] Y. Yin, C. He, T. Liu and L. Wu, "Risk-Averse Stochastic Midterm Scheduling of Thermal-Hydro-Wind System: A Network-Constrained Clustered Unit Commitment Approach," IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1293-1304, July 2022, doi: 10.1109/TSTE.2022.3150918. [ DOI:10.1109/TSTE.2022.3150918] 3. [3] M. Said, E. H. Houssein, S. Deb, A. A. Alhussan and R. M. Ghoniem, "A Novel Gradient Based Optimizer for Solving Unit Commitment Problem," IEEE Access, vol. 10, pp. 18081-18092, 2022, doi: 10.1109/ACCESS.2022.3150857. [ DOI:10.1109/ACCESS.2022.3150857] 4. [4] Z. Jiang, Y. Liu, Z. Kang, T. Han and J. Zhou, "Security-Constrained Unit Commitment for Hybrid VSC-MTDC/AC Power Systems With High Penetration of Wind Generation," IEEE Access, vol. 10, pp. 14029-14037, 2022, doi: 10.1109/ACCESS.2022.3148316. [ DOI:10.1109/ACCESS.2022.3148316] 5. [5] Q. Gao, Z. Yang, W. Yin, W. Li and J. Yu, "Internally Induced Branch-and-Cut Acceleration for Unit Commitment Based on Improvement of Upper Bound," IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 2455-2458, May 2022, doi: 10.1109/TPWRS.2022.3146772. [ DOI:10.1109/TPWRS.2022.3146772] 6. [6] X. Chen, Y. Yang, Y. Liu and L. Wu, "Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework," IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 3104-3118, July 2022, doi: 10.1109/TPWRS.2021.3128485. [ DOI:10.1109/TPWRS.2021.3128485] 7. [7] G. E. Constante-Flores, A. J. Conejo and F. Qiu, "AC Network-Constrained Unit Commitment via Relaxation and Decomposition," IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 2187-2196, May 2022, doi: 10.1109/TPWRS.2021.3120180. [ DOI:10.1109/TPWRS.2021.3120180] 8. [8] G. Gutiérrez-Alcaraz, B. Díaz-López, J. M. Arroyo and V. H. Hinojosa, "Large-Scale Preventive Security-Constrained Unit Commitment Considering N-k Line Outages and Transmission Losses," IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 2032-2041, May 2022, doi: 10.1109/TPWRS.2021.3116462. [ DOI:10.1109/TPWRS.2021.3116462] 9. [9] Y. Zhang et al., "Encoding Frequency Constraints in Preventive Unit Commitment Using Deep Learning With Region-of-Interest Active Sampling," IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1942-1955, May 2022, doi: 10.1109/TPWRS.2021.3110881. [ DOI:10.1109/TPWRS.2021.3110881] 10. [10] T. Wu, Y. -J. Angela Zhang and S. Wang, "Deep Learning to Optimize: Security-Constrained Unit Commitment With Uncertain Wind Power Generation and BESSs," IEEE Transactions on Sustainable Energy, vol. 13, no. 1, pp. 231-240, Jan. 2022, doi: 10.1109/TSTE.2021.3107848. [ DOI:10.1109/TSTE.2021.3107848] 11. [11] Kate Doubleday, José Daniel Lara, Bri-Mathias Hodge, "Investigation of stochastic unit commitment to enable advanced flexibility measures for high shares of solar PV", Applied Energy, Volume 321, 119337, 2022. [ DOI:10.1016/j.apenergy.2022.119337] 12. [12] Ona Egbue, Charles Uko, Ali Aldubaisi, Enrico Santi, "A unit commitment model for optimal vehicle-to-grid operation in a power system," International Journal of Electrical Power & Energy Systems, Volume 141, 108094, 2022. [ DOI:10.1016/j.ijepes.2022.108094] 13. [13] Xianliang Cheng, Suzhen Feng, Hao Zheng, Jinwen Wang, Shuangquan Liu, "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency," Energy, Volume 251, 123908, 2022. [ DOI:10.1016/j.energy.2022.123908] 14. [14] Yeqi Sun, Bo Wang, Ran Yuan, Junzo Watada, "Rolling unit commitment based on dual-discriminator conditional generative adversarial networks," Electric Power Systems Research, Volume 205, 107770, 2022. [ DOI:10.1016/j.epsr.2021.107770] 15. [15] Hoa Quynh Truong, Chawalit Jeenanunta, "Fuzzy mixed integer linear programming model for national level monthly unit commitment under price-based uncertainty: A case study in Thailand," Electric Power Systems Research, Volume 209, 107963, 2022. [ DOI:10.1016/j.epsr.2022.107963] 16. [16] Paria Mansourshoar, Ahmad Sadeghi Yazdankhah, Mohsen Vatanpour, Behnam Mohammadi-Ivatloo, "Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies," Energy, Volume 255, 124333, 2022. [ DOI:10.1016/j.energy.2022.124333] 17. [17] Jiayin Xu, Yinghao Ma, Kun Li, Zhiwei Li, "Unit commitment of power system with large-scale wind power considering multi time scale flexibility contribution of demand response," Energy Reports, Volume 7, Supplement 7, Pages 342-352, 2021. [ DOI:10.1016/j.egyr.2021.10.025] 18. [18] Gonzalo E. Constante-Flores, Antonio J. Conejo, Feng Qiu, "AC network-constrained unit commitment via conic relaxation and convex programming," International Journal of Electrical Power & Energy Systems, Volume 134, 107364, 2022. [ DOI:10.1016/j.ijepes.2021.107364] 19. [19] Chen Zhang, Linfeng Yang, "Distributed AC security-constrained unit commitment for multi-area interconnected power systems," Electric Power Systems Research, Volume 211, 108197, 2022. [ DOI:10.1016/j.epsr.2022.108197] 20. [20] Pan Liang, Navid Bohlooli, "Optimal unit commitment integrated energy storage system, renewable energy sources and FACTS devices with robust method," Electric Power Systems Research, Volume 209, 107961, 2022. [ DOI:10.1016/j.epsr.2022.107961] 21. [21] Alizadeh lashkani M, Baghramian A. Optimization of Security Constrained Unit Commitment Problem in Thermal Integrated Photovoltaic Units by BPSO Algorithm. ieijqp 2016; 4 (2) :4-14 22. URL: http://ieijqp.ir/article-1-154-fa.html 23. [22] Simab M, zandi A. Unit Commitment in Smart Grids Considering Emission and Energy Storage Systems. ieijqp 2021; 10 (2) :96-105. URL: http://ieijqp.ir/article-1-760-fa.html
|