[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 1 (4-2023) ::
ieijqp 2023, 12(1): 31-43 Back to browse issues page
Presenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty
Hossein Lotfi1 , Mohammad ebrahim Hajiabadi * 1, Mehdi Samadi1
1- Hakim sabzevari university
Abstract:   (927 Views)

Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed generation sources and capacitor units in a multi-objective format. Also, the effect of uncertainty related to electric charge is included in the optimization process of the problem.  The optimization problem of the distribution network reconfiguration is non-linear and non-convex, considering that the effect of distributed and capacitive generation units makes the optimization problem more complicated. For this purpose, an improved gray wolf optimization algorithm is presented to solve this optimization problem. Then, the values ​​of the objective functions are normalized using fuzzy membership functions, and finally, fuzzy logic is used to find the most optimal solution among the Pareto solutions. To verify the effectiveness of the proposed method, it is tested on a test system of 33 pools, and the results of the optimization are compared with those of other evolutionary algorithms.
 

Keywords: Feeder reconfiguration, Distributed generation, Capacitor units, Energy not supplied, Modified grey wolf optimization method
Full-Text [PDF 1173 kb]   (445 Downloads)    
Type of Study: Research |
Received: 2022/07/20 | Accepted: 2023/03/6 | Published: 2023/04/30
References
1. [1] A. Lotfipour and H. Afrakhte. (2016). A discrete Teaching-Learning Based Optimization algorithm to solve distribution system reconfiguration in presence of distributed generation. Int. J. Elect. Power Energy Syst, 82: pp. 264-273. [DOI:10.1016/j.ijepes.2016.03.009]
2. [2] Rani, D.S., N. Subrahmanyam, and M. Sydulu. (2015). Multi-objective invasive weed optimization-an application to optimal network reconfiguration in radial distribution systems. International Journal of Electrical Power & Energy Systems, 73: pp. 932-942. [DOI:10.1016/j.ijepes.2015.06.020]
3. [3] Mahboubi-Moghaddam, E., et al. (2016). Multi-objective distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations. International Journal of Electrical Power & Energy Systems, 76: pp. 35-43. [DOI:10.1016/j.ijepes.2015.09.007]
4. [4] M. Abdelaziz. (2017). Distribution network reconfiguration using a genetic algorithm with varying population size. Electric Power Systems Research, 142: pp. 9-11. [DOI:10.1016/j.epsr.2016.08.026]
5. [5] M. Kaur and S. Ghosh. (2016). Network reconfiguration of unbalanced distribution networks using fuzzy-firefly algorithm," Applied Soft Computing, 49: pp. 868-886. [DOI:10.1016/j.asoc.2016.09.019]
6. [6] Parizad, A., et al. (2018). Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm. in 2018 IEEE Power and Energy Conference at Illinois (PECI). IEEE. [DOI:10.1109/PECI.2018.8334976]
7. [7] Reddy, A.S., M.D. Reddy, and Y.K. Reddy. (2018). Feeder Reconfiguration of Distribution Systems for Loss Reduction and Emissions Reduction using MVO Algorithm. Majlesi Journal of Electrical Engineering, 12(2): p. 1-8.
8. [8] Landeros, A., S. Koziel, and M.F. Abdel-Fattah. (2019). Distribution network reconfiguration using feasibility-preserving evolutionary optimization. Journal of Modern Power Systems and Clean Energy, 7(3): p. 589-598. [DOI:10.1007/s40565-018-0480-7]
9. [9] Pegado, R., et al. (2019). Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electric Power Systems Research, 169: p. 206-213. [DOI:10.1016/j.epsr.2018.12.030]
10. [10] Alonso, F., D. Oliveira, and A.Z. de Souza. (2015). Artificial immune systems optimization approach for multi-objective distribution system reconfiguration.IEEE Transactions on Power Systems, 30(2): pp. 840-847.2015. [DOI:10.1109/TPWRS.2014.2330628]
11. [11] Azizivahed, A., et al. (2017). A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration. Energy, 2017. 138: pp. 355-373. [DOI:10.1016/j.energy.2017.07.102]
12. [12] Siahbalaee, J., N. Rezanejad, and G.B. Gharehpetian. (2020). Reconfiguration and DG Sizing and Placement Using Improved Shuffled Frog Leaping Algorithm. Electric Power Components and Systems, 47: pp. 1475-88. [DOI:10.1080/15325008.2019.1689449]
13. [13] Roosta, A., H.-R. Eskandari, and M.-H. Khooban. (2019). Optimization of radial unbalanced distribution networks in the presence of distribution generation units by network reconfiguration using harmony search algorithm. Neural Computing and Applications, 31(11): pp. 7095-09. [DOI:10.1007/s00521-018-3507-0]
14. [14] M. Sedighizadeh, M. Esmaili, and M. Mahmoodi. (2017). Reconfiguration of distribution systems to improve reliability and reduce power losses using Imperialist Competitive Algorithm. Iranian Journal of Electrical and Electronic Engineering, 13(3): pp. 287-302.
15. [15] A. Viet Truong, T. Ngoc Ton, T. Thanh Nguyen, and T. Duong. (2019).Two states for optimal position and capacity of distributed generators considering network reconfiguration for power loss minimization based on runner root algorithm. Energies, 12(1): p. 106. [DOI:10.3390/en12010106]
16. [16] H. Teimourzadeh and B. Mohammadi-Ivatloo. (2020). A three-dimensional group search optimization approach for simultaneous planning of distributed generation units and distribution network reconfiguration. Applied Soft Computing, 88: pp. 106012. [DOI:10.1016/j.asoc.2019.106012]
17. [17] Esmaeili, M., M. Sedighizadeh, and M. Esmaili. (2016). Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy, 103: pp. 86-99, [DOI:10.1016/j.energy.2016.02.152]
18. [18] Bayat, A., A. Bagheri, and R. Noroozian. (2016). Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new UVDA-based heuristic method. International Journal of Electrical Power & Energy Systems, 77: pp. 360-371. [DOI:10.1016/j.ijepes.2015.11.039]
19. [19] M. R. Babu, C. V. Kumar and S. Anitha. (2021). Simultaneous Reconfiguration and Optimal Capacitor Placement Using Adaptive Whale Optimization Algorithm for Radial Distribution System. J. Electr. Eng. Technol, 16(1): pp. 181-190. [DOI:10.1007/s42835-020-00593-5]
20. [20] C.-T. Su and C.-S. Lee. (2001). Feeder reconfiguration and capacitor setting for loss reduction of distribution systems. Electric Power Syst. Res., 58(2):, pp. 97-102. [DOI:10.1016/S0378-7796(01)00124-9]
21. [21] A. N. Hussain, W. K. Shakir Al-Jubori and H. F. Kadom. (2019). Hybrid design of optimal capacitor placement and reconfiguration for performance improvement in a radial distribution system. J. Eng., pp. 1-15. [DOI:10.1155/2019/1696347]
22. [22] M. Sedighizadeh and R. Bakhtiary. (2016). Optimal multi-objective reconfiguration and capacitor placement of distribution systems with the Hybrid Big Bang-Big Crunch algorithm in the fuzzy framework, Ain Shams Eng. J., 7(1): pp. 113-129. [DOI:10.1016/j.asej.2015.11.018]
23. [23] H. Lotfi, R. Ghazi, and M. B. Naghibi-Sistani. (2020). Multi-objective dynamic distribution feeder reconfiguration along with capacitor allocation using a new hybrid evolutionary algorithm. Energy Syst., 11(3): pp. 779-809. [DOI:10.1007/s12667-019-00333-3]
24. [24] H. Lotfi. (2020). Multi-objective energy management approach in
25. distribution grid integrated with energy storage units considering the demand response program. Int. J. Energy Res., 44(13): pp. 10662-10681,
26. [25] H. Lotfi and R. Ghazi. (2021). Optimal participation of demand response aggregators in reconfigurable distribution system considering photovoltaic and storage units. J. Ambient Intell. Human Comput, 12(2): 2233-2223, 2021. [DOI:10.1007/s12652-020-02322-2]
27. [26] S. Mirjalili, S. M. Mirjalili, and A. Lewis. (2014). Grey wolf optimizer, Advances in engineering software, 69: pp. 46-61. [DOI:10.1016/j.advengsoft.2013.12.007]
28. [27] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. d. S. Coelho. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization, Expert Systems with Applications, 47: pp. 106-119. [DOI:10.1016/j.eswa.2015.10.039]
29. [28] T. Niknam, E. A. Farsani, M. Nayeripour, and B. Bahmani Firouzi. (2012). A new tribe modified shuffled frog leaping algorithm for multi‐objective distribution feeder reconfiguration considering distributed generator units, European Transactions on Electrical Power, 22(3): 3, pp. 308-333, [DOI:10.1002/etep.564]
30. [29] R. Narimani, A. A. Vahed, R. Azizipanah-Abarghooee
31. and M. Javidsharifi. (2014). Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost. IET Generat. Trans. Distribut, 8(1): pp. 55-69. [DOI:10.1049/iet-gtd.2013.0117]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

lotfi H, hajiabadi M E, samadi M. Presenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty. ieijqp 2023; 12 (1) :31-43
URL: http://ieijqp.ir/article-1-917-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 1 (4-2023) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4660