1. [1] A. Lotfipour and H. Afrakhte. (2016). A discrete Teaching-Learning Based Optimization algorithm to solve distribution system reconfiguration in presence of distributed generation. Int. J. Elect. Power Energy Syst, 82: pp. 264-273. [ DOI:10.1016/j.ijepes.2016.03.009] 2. [2] Rani, D.S., N. Subrahmanyam, and M. Sydulu. (2015). Multi-objective invasive weed optimization-an application to optimal network reconfiguration in radial distribution systems. International Journal of Electrical Power & Energy Systems, 73: pp. 932-942. [ DOI:10.1016/j.ijepes.2015.06.020] 3. [3] Mahboubi-Moghaddam, E., et al. (2016). Multi-objective distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations. International Journal of Electrical Power & Energy Systems, 76: pp. 35-43. [ DOI:10.1016/j.ijepes.2015.09.007] 4. [4] M. Abdelaziz. (2017). Distribution network reconfiguration using a genetic algorithm with varying population size. Electric Power Systems Research, 142: pp. 9-11. [ DOI:10.1016/j.epsr.2016.08.026] 5. [5] M. Kaur and S. Ghosh. (2016). Network reconfiguration of unbalanced distribution networks using fuzzy-firefly algorithm," Applied Soft Computing, 49: pp. 868-886. [ DOI:10.1016/j.asoc.2016.09.019] 6. [6] Parizad, A., et al. (2018). Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm. in 2018 IEEE Power and Energy Conference at Illinois (PECI). IEEE. [ DOI:10.1109/PECI.2018.8334976] 7. [7] Reddy, A.S., M.D. Reddy, and Y.K. Reddy. (2018). Feeder Reconfiguration of Distribution Systems for Loss Reduction and Emissions Reduction using MVO Algorithm. Majlesi Journal of Electrical Engineering, 12(2): p. 1-8. 8. [8] Landeros, A., S. Koziel, and M.F. Abdel-Fattah. (2019). Distribution network reconfiguration using feasibility-preserving evolutionary optimization. Journal of Modern Power Systems and Clean Energy, 7(3): p. 589-598. [ DOI:10.1007/s40565-018-0480-7] 9. [9] Pegado, R., et al. (2019). Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electric Power Systems Research, 169: p. 206-213. [ DOI:10.1016/j.epsr.2018.12.030] 10. [10] Alonso, F., D. Oliveira, and A.Z. de Souza. (2015). Artificial immune systems optimization approach for multi-objective distribution system reconfiguration.IEEE Transactions on Power Systems, 30(2): pp. 840-847.2015. [ DOI:10.1109/TPWRS.2014.2330628] 11. [11] Azizivahed, A., et al. (2017). A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration. Energy, 2017. 138: pp. 355-373. [ DOI:10.1016/j.energy.2017.07.102] 12. [12] Siahbalaee, J., N. Rezanejad, and G.B. Gharehpetian. (2020). Reconfiguration and DG Sizing and Placement Using Improved Shuffled Frog Leaping Algorithm. Electric Power Components and Systems, 47: pp. 1475-88. [ DOI:10.1080/15325008.2019.1689449] 13. [13] Roosta, A., H.-R. Eskandari, and M.-H. Khooban. (2019). Optimization of radial unbalanced distribution networks in the presence of distribution generation units by network reconfiguration using harmony search algorithm. Neural Computing and Applications, 31(11): pp. 7095-09. [ DOI:10.1007/s00521-018-3507-0] 14. [14] M. Sedighizadeh, M. Esmaili, and M. Mahmoodi. (2017). Reconfiguration of distribution systems to improve reliability and reduce power losses using Imperialist Competitive Algorithm. Iranian Journal of Electrical and Electronic Engineering, 13(3): pp. 287-302. 15. [15] A. Viet Truong, T. Ngoc Ton, T. Thanh Nguyen, and T. Duong. (2019).Two states for optimal position and capacity of distributed generators considering network reconfiguration for power loss minimization based on runner root algorithm. Energies, 12(1): p. 106. [ DOI:10.3390/en12010106] 16. [16] H. Teimourzadeh and B. Mohammadi-Ivatloo. (2020). A three-dimensional group search optimization approach for simultaneous planning of distributed generation units and distribution network reconfiguration. Applied Soft Computing, 88: pp. 106012. [ DOI:10.1016/j.asoc.2019.106012] 17. [17] Esmaeili, M., M. Sedighizadeh, and M. Esmaili. (2016). Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy, 103: pp. 86-99, [ DOI:10.1016/j.energy.2016.02.152] 18. [18] Bayat, A., A. Bagheri, and R. Noroozian. (2016). Optimal siting and sizing of distributed generation accompanied by reconfiguration of distribution networks for maximum loss reduction by using a new UVDA-based heuristic method. International Journal of Electrical Power & Energy Systems, 77: pp. 360-371. [ DOI:10.1016/j.ijepes.2015.11.039] 19. [19] M. R. Babu, C. V. Kumar and S. Anitha. (2021). Simultaneous Reconfiguration and Optimal Capacitor Placement Using Adaptive Whale Optimization Algorithm for Radial Distribution System. J. Electr. Eng. Technol, 16(1): pp. 181-190. [ DOI:10.1007/s42835-020-00593-5] 20. [20] C.-T. Su and C.-S. Lee. (2001). Feeder reconfiguration and capacitor setting for loss reduction of distribution systems. Electric Power Syst. Res., 58(2):, pp. 97-102. [ DOI:10.1016/S0378-7796(01)00124-9] 21. [21] A. N. Hussain, W. K. Shakir Al-Jubori and H. F. Kadom. (2019). Hybrid design of optimal capacitor placement and reconfiguration for performance improvement in a radial distribution system. J. Eng., pp. 1-15. [ DOI:10.1155/2019/1696347] 22. [22] M. Sedighizadeh and R. Bakhtiary. (2016). Optimal multi-objective reconfiguration and capacitor placement of distribution systems with the Hybrid Big Bang-Big Crunch algorithm in the fuzzy framework, Ain Shams Eng. J., 7(1): pp. 113-129. [ DOI:10.1016/j.asej.2015.11.018] 23. [23] H. Lotfi, R. Ghazi, and M. B. Naghibi-Sistani. (2020). Multi-objective dynamic distribution feeder reconfiguration along with capacitor allocation using a new hybrid evolutionary algorithm. Energy Syst., 11(3): pp. 779-809. [ DOI:10.1007/s12667-019-00333-3] 24. [24] H. Lotfi. (2020). Multi-objective energy management approach in 25. distribution grid integrated with energy storage units considering the demand response program. Int. J. Energy Res., 44(13): pp. 10662-10681, 26. [25] H. Lotfi and R. Ghazi. (2021). Optimal participation of demand response aggregators in reconfigurable distribution system considering photovoltaic and storage units. J. Ambient Intell. Human Comput, 12(2): 2233-2223, 2021. [ DOI:10.1007/s12652-020-02322-2] 27. [26] S. Mirjalili, S. M. Mirjalili, and A. Lewis. (2014). Grey wolf optimizer, Advances in engineering software, 69: pp. 46-61. [ DOI:10.1016/j.advengsoft.2013.12.007] 28. [27] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. d. S. Coelho. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization, Expert Systems with Applications, 47: pp. 106-119. [ DOI:10.1016/j.eswa.2015.10.039] 29. [28] T. Niknam, E. A. Farsani, M. Nayeripour, and B. Bahmani Firouzi. (2012). A new tribe modified shuffled frog leaping algorithm for multi‐objective distribution feeder reconfiguration considering distributed generator units, European Transactions on Electrical Power, 22(3): 3, pp. 308-333, [ DOI:10.1002/etep.564] 30. [29] R. Narimani, A. A. Vahed, R. Azizipanah-Abarghooee 31. and M. Javidsharifi. (2014). Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost. IET Generat. Trans. Distribut, 8(1): pp. 55-69. [ DOI:10.1049/iet-gtd.2013.0117]
|