1. [1] S. Mirsaeidi, D. M. Said, M. W. Mustafa, M. H. Habibuddin and K. Ghaffari, "Modeling and simulation of a communication-assisted digital protection scheme for microgrid," Elsevier. Renewable and Sustainable Energy Reviews, vol.57, pp.867-878, May 2016. [ DOI:10.1016/j.rser.2015.12.218] 2. [2] S. Teimourzadeh, F. Aminifar, M. Davarpanah and J. M. Guerrero, "Macroprotections for microgrigs: Toward a New Protection Paradigm Subsequent to Distributed Energy Resource Integration," IEEE Industrial Electronics Magazine, vol.10, no.3, pp.6-18, Sep. 2016. [ DOI:10.1109/MIE.2016.2569620] 3. [3] F. Blaabjerg, Y. Yang, D. Yang and X. Wang, "Distributed power-generatin system and protection," Proc. of the IEEE, vol.105, no.7, pp. 1311-1331, May 2017 [ DOI:10.1109/JPROC.2017.2696878] 4. [4] Zaibin Jiao, Jiliang Jin, Lin Liu, Yu Wang, Qi Wang, Zhao Wang, "A Practical Setting Method for Over-Current Relay and Automatic Recloser in Distribution Network with Photovoltaic Station," International Journal of Electrical Energy, vol. 3, pp. 225-229, 2015. [ DOI:10.18178/ijoee.3.4.225-229] 5. [5] A. R. Adly, R. A. El Sehiemy and A. Y. Abdelaziz, "Optimal reclosing time to improve transient stability in distribution system," in CIRED - Open Access Proc. Journal, vol. 2017, no. 1, pp. 1359-1362, 10 2017. [ DOI:10.1049/oap-cired.2017.0085] 6. [6] F. Aminifar, M.Fotuhi-Firuzabad, A. Safdarian, A. Davoudi and M. Shahidehpour, "Synchrophasor measurement technology in power systems: panorama and state-of-the-art," IEEE Access, vol.2, pp. 1607-1628, 2014. [ DOI:10.1109/ACCESS.2015.2389659] 7. [7] T. Ghanbari and E. Farjah, "Unidirectional Fault Current Limiter: An Efficient Interface Between the Microgrid and Main Network," IEEE Trans. on Power Syst., vol. 28, no. 2, pp. 1591-1598, May 2013. [ DOI:10.1109/TPWRS.2012.2212728] 8. [8] M. Khederzadeh, "Preservation of over current relays coordination in microgrids by application of static series compensators," Proc. of the 11th Int. conf. on developments in power systems protection (DPSP), Birmingham,UK, pp. 1-6, Apr. 2012. [ DOI:10.1049/cp.2012.0077] 9. [9] A. Esmaeili Dahej, S. Esmaeili and H. Hojabri, "Co-Optimization of Protection Coordination and Power Quality in Microgrids Using Unidirectional Fault Current Limiters," IEEE Trans. on Smart Grid, vol. 9, no. 5, pp. 5080-5091, Sept. 2018. [ DOI:10.1109/TSG.2017.2679281] 10. [10] K. O. Oureilidis and Ch. S. Demoulias, "A Fault clearing method in converter-dominated microgrids with conventional protection means," IEEE Trans. Power Electronics, vol. 31, no. 6, pp.4628-4640, Jun. 2016. [ DOI:10.1109/TPEL.2015.2476702] 11. [11] U. Orji et al., "Adaptive Zonal Protection for Ring Microgrids," IEEE Trans. on Smart Grid, vol. 8, no. 4, pp. 1843-1851, Jul. 2017. [ DOI:10.1109/TSG.2015.2509018] 12. [12] H. Laaksonen, D. Ishchenko, and A. Oudalov, "Adaptive protection and microgrid control design for Hailuoto island," IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1486-1493, May 2014. [ DOI:10.1109/TSG.2013.2287672] 13. [13] H. H. Zeineldin, E. F. El-saadany, M. M. A. Salama, "Distributed generation microgrid operation: control and protection," Power Systems Conf. Advanced Metering, Protection, Control, Communication, and Distributed Resources, Clemson, SC, USA, pp. 105-111, Mar. 2006. [ DOI:10.1109/PSAMP.2006.285379] 14. [14] E. Sortomme, S. S. Venkata and J. Mitra, "Microgrid Protection Using Communication-Assisted Digital Relays,", IEEE Trans. Power Del., vol. 25, no. 4, pp. 2789 - 2796, Oct. 2010. [ DOI:10.1109/TPWRD.2009.2035810] 15. [15] T. S. Aghdam, H. Kazemi Karegar and H. H. Zeineldin, "Variable Tripping Time Differential Protection for Microgrids Considering DG Stability," IEEE Trans. on Smart Grid, vol. 10, no. 3, pp. 2407-2415, May 2019. [ DOI:10.1109/TSG.2018.2797367] 16. [16] S.Kar, S. R. Samantaray, and M. Dadashzadeh, "Data mining model based intelligent differential microgrid protection scheme," IEEE Systems Journal, vol. 11, no. 2, pp. 1161-1169, Jun. 2017. [ DOI:10.1109/JSYST.2014.2380432] 17. [17] T. Loix, T. Wijnhoven and G. Deconinck, "Protection of microgrids with a high penetration of inverter-coupled energy sources," CIGRE/IEEE PES Joint Symposium Integration of Wide-Scale Renewable Resources Into the Power Del. System, Calgary, AB, Canada, pp. 1-8, 2009. 18. [18] N. K. Sharma and S. R. Samantaray, "Assessment of PMU-based wide-area angle criterion for fault detection in microgrid," IET Generation, Transmission & Distribution, vol. 13, no. 19, pp. 4301-4310, Oct. 2019. [ DOI:10.1049/iet-gtd.2019.0027] 19. [19] R. J. Best, D. J. Morrow and P. A. Crossley, "Communication assisted protection selectivity for reconfigurable and islanded power networks," Proc. of the 44th int. universities power engineering Conf. (UPEC), Glasgow, Scotland, pp. 1-4, 2009. 20. [20] A. Darabi, M. Bagheri and G. B. Gharehpetian, "Highly sensitive microgrid protection using overcurrent relays with a novel relay characteristic," IET Renewable Power Generation, vol. 14, no. 7, pp. 1201-1209, May 2020. [ DOI:10.1049/iet-rpg.2019.0793] 21. [21] M. A. Zamani, T. S. Sidhu and A. Yazdani, "A protection strategy and microprocessor-based relay for low-voltage microgrids," IEEE Trans. on Power Del., vol. 26, no. 3, pp. 1873-1883, Jul. 2011. [ DOI:10.1109/TPWRD.2011.2120628] 22. [22] R. H. Furlan, C. H. Beuter, R. P. Bataglioli, I. d. M. Faria and M. Oleskovicz, "Improvement of overcurrent protection considering distribution systems with distributed generation," 18th Int. Conf. on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 2018. [ DOI:10.1109/ICHQP.2018.8378863] 23. [23] A. Hooshyar and R. Iravani, "Microgrid Protection," Proc. of the IEEE, vol. 105, no. 7, pp. 1332-1353, Jul. 2017 [ DOI:10.1109/JPROC.2017.2669342] 24. [24] V. C. Nikolaidis, A. M. Tsimtsios and A. S. Safigianni, "Investigating particularities of infeed and fault resistance effect on distance relays protecting radial distribution feeders with DG," IEEE Access, vol.6, pp. 11301-11312, Mar. 2018. [ DOI:10.1109/ACCESS.2018.2804046] 25. [25] N. Bottrell and T. C. Green, "An impedance-based method for the detection of over-load and network faults in inverter interfaced distributed generation," 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10. [ DOI:10.1109/EPE.2013.6631800] 26. [26] W. Huang, T. Nengling, X. Zheng, Ch. Fan, X. Yang and B. J. Kirby, "An impedance protection scheme for feeders of active distribution networks," IEEE Trans. on Power Del., vol. 29, no. 4, Aug. 2014. [ DOI:10.1109/TPWRD.2014.2322866] 27. [27] K. Pandakov and H. K. Hoidalen, "Distance protection with fault impedance compensation for distribution network with DG," IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Torino, Italy, Sept. 2017. [ DOI:10.1109/ISGTEurope.2017.8260170] 28. [28] M. Biller and J. Jaeger, "Voltage-free distance protection method for closed loop structures," IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Sarajevo, Bosnia-Herzegovina, 2018. [ DOI:10.1109/ISGTEurope.2018.8571850] 29. [29] Y. Fang , K. Jia, Zh. Yang, Y. Li and T. Bi , "Impact of inverter-interfaced renewable energy generators on distance protection and an improved scheme," IEEE Trans. on Industrial Electronics, vol. 66, no. 9, Sept. 2019. [ DOI:10.1109/TIE.2018.2873521] 30. [30] A. Shabani and K. Mazlumi, "Evaluation of a Communication-Assisted Overcurrent Protection Scheme for Photovoltaic-Based DC Microgrid," IEEE Trans. on Smart Grid, vol. 11, no. 1, pp. 429-439, Jan. 2020 [ DOI:10.1109/TSG.2019.2923769] 31. [31] N. K. Sharma and S. R. Samantaray, "PMU Assisted Integrated Impedance Angle-Based Microgrid Protection Scheme," IEEE Trans. on Power Del., vol. 35, no. 1, pp. 183-193, Feb. 2020 [ DOI:10.1109/TPWRD.2019.2925887] 32. [32] V. T. Garcia, D. Guillen, J.Olveres, B. E. Ramirez, J. R. R. Rodriguez, "Modelling of high impedance faults in distribution systems and validation based on multiresolution techniques," Computers & Electrical Engineering, vol. 83, May 2020 [ DOI:10.1016/j.compeleceng.2020.106576] 33. [33] S. M. Nobakhti, A. Ketabi, M. Shafie-khah, "A new impedance-based main and backup protection scheme for active distribution lines in AC microgrids," Energies, vol. 14(2), 274, Jan. 2021 [ DOI:10.3390/en14020274] 34. [34] X. Wang et al., "High Impedance Fault Detection Method Based on Variational Mode Decomposition and Teager-Kaiser Energy Operators for Distribution Network," IEEE Trans. on Smart Grid, vol. 10, no. 6, pp. 6041-6054, Nov. 2019 [ DOI:10.1109/TSG.2019.2895634]
|