[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 11، شماره 3 - ( 3-1401 ) ::
جلد 11 شماره 3 صفحات 18-1 برگشت به فهرست نسخه ها
حفاظت تطبیقی بهینه شبکه های توزیع فعال با انتخاب منحنی مشخصه استاندارد بهینه رله های اضافه جریان جهت دار و درنظرگیری محدودیت در تعداد گروه های تنظیم
محمد شمسی1 ، حامد هاشمی دزکی* 1
1- دانشکده مهندسی برق و کامپیوتر- دانشگاه کاشان- کاشان- ایران
چکیده:   (2233 مشاهده)
تغییر در آرایش شبکه­ های توزیع ناشی از خروج یکی از پست­ های بالادست یا منابع تولید پراکنده، یکی از چالش ­های اساسی طراحی شبکه ­های توزیع خواهد بود که تاثیر بسزایی در طرح ­های حفاظتی و نقض قیود هماهنگی در حالات مختلف بهره­ برداری خواهد گذاشت. درصورت عدم توجه به پیکربندی­ های شبکه، بروز نقض قیدهای هماهنگی در سایر پیکربندی­ های شبکه ناشی از خروج یکی از منابع تولید یا پست­ های بالادست اجتناب­ ناپذیر خواهد بود. طرح ­های حفاظت تطبیقی نسبت به طرح ­هایی که تنها از یک گروه ­تنظیم حفاظتی استفاده می­ نمایند، برتری داشته و سرعت عملکرد بهتری خواهند داشت. از خلاء­های تحقیقاتی که کم ­تر به آن­ ها توجه شده است، محدودیت در تعداد گروه­ های تنظیم نسبت به حالات بهره ­برداری است. رویکرد ارائه ­شده در این مقاله، حفاظت تطبیقی با درنظرگرفتن آرایش­ های مختلف شبکه با بهره ­مندی از قابلیت گروه ­های تنظیم مختلف رله­ های اضافه­ جریان است. با توجه به محدودیت در مورد تعداد گروه ­تنظیم ­های موجود در رله ­های تجاری، در طرح پیشنهادی تنظیمات بهینه ­ی رله­های اضافه­جریان برای حالات مختلف شبکه با درنظرگرفتن تعداد محدود گروه­های تنظیم رله­ها به­دست خواهد آمد. یکی از مزایا و نوآوری­ های روش پیشنهادی، بهینه­سازی منحنی­ مشخصه­ی رله­های حفاظتی در کنار بهینه ­سازی تنظیمات زمانی و جریانی است که در طرح­های حفاظت تطبیقیِ پیشین کم­تر به آن توجه شده بود. افزایش زمان طرح حفاظت تطبیقی ناشی از اعمال محدودیت در تعداد گروه های تنظیمی نسبت به شرایطی که تعداد گروه های تنظیمی محدود نباشد، به میزان 53/79% است. نتایج پیاده ­سازی روش پیشنهادی بر روی بخش توزیع شبکه 30 شین IEEE دلالت بر برتری قابل توجه 52/47 % در زمان­ عملکرد سیستم حفاظتی نسبت به طرح­ های حفاظت تطبیقی با منحنی­ مشخصه پیش ­فرض دارد.
واژه‌های کلیدی: شبکه های توزیع فعال، حفاظت تطبیقی، حفاظت بهینه، پیکربندی های مختلف شبکه، رله های اضافه جریان جهت دار، انتخاب بهینه منحنی مشخصه استاندارد، محدودیت گروه های تنظیم مختلف رله ها، الگوریتم ژنتیک، DIgSILENT.
متن کامل [PDF 2529 kb]   (487 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1400/11/17 | پذیرش: 1401/3/29 | انتشار: 1401/9/2
فهرست منابع
1. [1] S. A. Jazayeri, G. Shahgholian, B. Fani, and M. Moazzami, "Hierarchical Protection Scheme Based on Multi-Agent Systems in Distributed Networks in the Presence of Distributed Generation Resources," jiaeee, vol. 18, no. 2, pp. 93-106, 2021, doi: 10.52547/jiaeee.18.2.93.
2. [2] A. Mahboubkhah, V. Talavat, and M. Beiraghi, "Considering transient state in interconnected networks during fault for coordination of directional overcurrent relays," Electric Power Systems Research, vol. 186, p. 106413, 2020, doi: [DOI:10.1016/j.epsr.2020.106413.]
3. [3] m. ghanbari, m. gandomkar, and j. nikoukaar, "Decreasing Distribution Generation Effects on Grid Short Circuit Level Using Superconducting Fault Current Limiter Through Updating Relays Set-Points ," ieijqp, vol. 9, no. 3, pp. 28-40, 2020, doi: 10.29252/ieijqp.9.328.
4. [4] M. Rahimi, B. Fani, M. Moazzami, M. Dehghani, and G. Shahgholian, "An Online Free Penetration Multi-Stage Fuse Saving Protection Scheme in Distribution Systems with Photovoltaic Sources," ieijqp, vol. 9, no. 2, pp. 24-35, 2020, doi: 10.29252/ieijqp.9.2.24.
5. [5] N. El-Naily, S. M. Saad, and F. A. Mohamed, "Novel approach for optimum coordination of overcurrent relays to enhance microgrid earth fault protection scheme," Sustainable Cities and Society, vol. 54, p. 102006, 2020/03/01/ 2020, doi: [DOI:10.1016/j.scs.2019.102006.]
6. [6] A. Yazdaninejadi, D. Nazarpour, and S. Golshannavaz, "Sustainable electrification in critical infrastructure: Variable characteristics for overcurrent protection considering DG stability," Sustainable Cities and Society, vol. 54, p. 102022, 2020, doi: [DOI:10.1016/j.scs.2020.102022.]
7. [7] M. N. Alam, B. Das, and V. Pant, "Protection coordination scheme for directional overcurrent relays considering change in network topology and OLTC tap position," Electric Power Systems Research, vol. 185, p. 106395, 2020, doi: [DOI:10.1016/j.epsr.2020.106395.]
8. [8] H. Kazemi Karegar and A. Abbasi, "appropriation of differential protection for optimal protection of active distribution networks under different configurations," ieijqp, vol. 7, no. 2, pp. 113-121, 2019. [Online]. Available: http://ieijqp.ir/article-1-554-fa.html.
9. [9] A. Elmitwally, M. S. Kandil, E. Gouda, and A. Amer, "Mitigation of DGs Impact on Variable-Topology Meshed Network Protection System by Optimal Fault Current Limiters Considering Overcurrent Relay Coordination," Electric Power Systems Research, vol. 186, p. 106417, 2020, doi: [DOI:10.1016/j.epsr.2020.106417.]
10. [10] M. H. Sadeghi, A. Dastfan, and Y. Damchi, "Robust and adaptive coordination approaches for co-optimization of voltage dip and directional overcurrent relays coordination," International Journal of Electrical Power & Energy Systems, vol. 129, p. 106850, 2021, doi: [DOI:10.1016/j.ijepes.2021.106850.]
11. [11] T. Amraee, A. Ranjbar, and B. Mozaffari, "Multi-Stage Under Frequency Load Shedding Relay in Islanded Distribution Systems," ku-energy, vol. 7, no. 4, pp. 2-11, 2018. [Online]. Available: http://energy.kashanu.ac.ir/article-1-685-fa.html.
12. [12] J. P. Nascimento, N. S. D. Brito, and B. A. Souza, "An adaptive overcurrent protection system applied to distribution systems," Computers & Electrical Engineering, vol. 81, p. 106545, 2020, doi: [DOI:10.1016/j.compeleceng.2019.106545.]
13. [13] A. J. Urdaneta, L. G. Perez, and H. Restrepo, "Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology," IEEE Transactions on Power Delivery, vol. 12, no. 4, pp. 1458-1464, 1997, doi: 10.1109/61.634161.
14. [14] "Evaluation of effectiveness of uncertainty in communication links on the adaptive protection schemes," ieijqp, vol. 6, no. 1, pp. 8-19, 2017. [Online]. Available: http://ieijqp.ir/article-1-363-fa.html.
15. [15] M. N. Alam, "Adaptive Protection Coordination Scheme Using Numerical Directional Overcurrent Relays," IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 64-73, 2019, doi: 10.1109/TII.2018.2834474.
16. [16] A. Darabi, M. Bagheri, and G. B. Gharehpetian, "Highly reliable overcurrent protection scheme for highly meshed power systems," International Journal of Electrical Power & Energy Systems, vol. 119, p. 105874, 2020, doi: [DOI:10.1016/j.ijepes.2020.105874.]
17. [17] H. M. Sharaf, H. H. Zeineldin, and E. El-Saadany, "Protection Coordination for Microgrids With Grid-Connected and Islanded Capabilities Using Communication Assisted Dual Setting Directional Overcurrent Relays," IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 143-151, 2018, doi: 10.1109/TSG.2016.2546961.
18. [18] A. M. Entekhabi-Nooshabadi, H. Hashemi-Dezaki, and S. A. Taher, "Optimal microgrid’s protection coordination considering N-1 contingency and optimum relay characteristics," Applied Soft Computing, vol. 98, p. 106741, 2021, doi: [DOI:10.1016/j.asoc.2020.106741.]
19. [19] K. A. Saleh, H. H. Zeineldin, and E. F. El-Saadany, "Optimal Protection Coordination for Microgrids Considering N-1 Contingency," IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2270-2278, 2017, doi: 10.1109/TII.2017.2682101.
20. [20] A. Samadi and R. Mohammadi Chabanloo, "Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups," International Journal of Electrical Power & Energy Systems, vol. 120, p. 106026, 2020, doi: [DOI:10.1016/j.ijepes.2020.106026.]
21. [21] T. S. Aghdam, H. K. Karegar, and H. H. Zeineldin, "Optimal Coordination of Double-Inverse Overcurrent Relays for Stable Operation of DGs," IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 183-192, 2019, doi: 10.1109/TII.2018.2808264.
22. [22] S.-A. Ahmadi, H. Karami, and B. Gharehpetian, "Comprehensive coordination of combined directional overcurrent and distance relays considering miscoordination reduction," International Journal of Electrical Power & Energy Systems, vol. 92, pp. 42-52, 2017, doi: [DOI:10.1016/j.ijepes.2017.04.008.]
23. [23] M. N. Alam, "Overcurrent protection of AC microgrids using mixed characteristic curves of relays," Computers & Electrical Engineering, vol. 74, pp. 74-88, 2019, doi: [DOI:10.1016/j.compeleceng.2019.01.003.]
24. [24] A. Narimani and H. Hashemi-Dezaki, "Optimal stability-oriented protection coordination of smart grid’s directional overcurrent relays based on optimized tripping characteristics in double-inverse model using high-set relay," International Journal of Electrical Power & Energy Systems, vol. 133, p. 107249, 2021, doi: [DOI:10.1016/j.ijepes.2021.107249.]
25. [25] H. R. E. H. Bouchekara, M. Zellagui, and M. A. Abido, "Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm," Applied Soft Computing, vol. 54, pp. 267-283, 2017, doi: [DOI:10.1016/j.asoc.2017.01.037.]
26. [26] A. Chandra and A. K. Pradhan, "Model-free angle stability assessment using wide area measurements," International Journal of Electrical Power & Energy Systems, vol. 120, p. 105972, 2020, doi: [DOI:10.1016/j.ijepes.2020.105972.]
27. [27] J. D. Pico, D. Celeita, and G. Ramos, "Protection Coordination Analysis Under a Real-Time Architecture for Industrial Distribution Systems Based on the Std IEEE 242-2001," IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2826-2833, 2016, doi: 10.1109/TIA.2016.2538739.
28. [28] J. Andruszkiewicz, J. Lorenc, B. Staszak, A. Weychan, and B. Zięba, "Overcurrent protection against multi-phase faults in MV networks based on negative and zero sequence criteria," International Journal of Electrical Power & Energy Systems, vol. 134, p. 107449, 2022, doi: [DOI:10.1016/j.ijepes.2021.107449.]
29. [29] S. S. Fatemi and H. Samet, "Considering DGs Voltage Protection in Optimal Coordination of Directional Overcurrent Relays to Minimize the Energy Not Supplied," IEEE Systems Journal, pp. 1-9, 2020, doi: 10.1109/JSYST.2020.3001378.
30. [30] P. Mishra, A. K. Pradhan, and P. Bajpai, "A Positive Sequence Relaying Method for Solar Photovoltaic Integrated Distribution System," IEEE Transactions on Power Delivery, pp. 1-1, 2020, doi: 10.1109/TPWRD.2020.3044330.
31. [31] S. K. ElSayed and E. E. Elattar, "Hybrid Harris hawks optimization with sequential quadratic programming for optimal coordination of directional overcurrent relays incorporating distributed generation," Alexandria Engineering Journal, vol. 60, no. 2, pp. 2421-2433, 2021, doi: [DOI:10.1016/j.aej.2020.12.028.]
32. [32] S. Khatua and V. Mukherjee, "Adaptive overcurrent protection scheme suitable for station blackout power supply of nuclear power plant operated through an integrated microgrid," Electric Power Systems Research, vol. 192, p. 106934, 2021, doi: [DOI:10.1016/j.epsr.2020.106934.]
33. [1] S. A. Jazayeri, G. Shahgholian, B. Fani, and M. Moazzami, "Hierarchical Protection Scheme Based on Multi-Agent Systems in Distributed Networks in the Presence of Distributed Generation Resources," jiaeee, vol. 18, no. 2, pp. 93-106, 2021, doi: 10.52547/jiaeee.18.2.93.
34. [2] A. Mahboubkhah, V. Talavat, and M. Beiraghi, "Considering transient state in interconnected networks during fault for coordination of directional overcurrent relays," Electric Power Systems Research, vol. 186, p. 106413, 2020, doi: [DOI:10.1016/j.epsr.2020.106413.]
35. [3] m. ghanbari, m. gandomkar, and j. nikoukaar, "Decreasing Distribution Generation Effects on Grid Short Circuit Level Using Superconducting Fault Current Limiter Through Updating Relays Set-Points ," ieijqp, vol. 9, no. 3, pp. 28-40, 2020, doi: 10.29252/ieijqp.9.328.
36. [4] M. Rahimi, B. Fani, M. Moazzami, M. Dehghani, and G. Shahgholian, "An Online Free Penetration Multi-Stage Fuse Saving Protection Scheme in Distribution Systems with Photovoltaic Sources," ieijqp, vol. 9, no. 2, pp. 24-35, 2020, doi: 10.29252/ieijqp.9.2.24.
37. [5] N. El-Naily, S. M. Saad, and F. A. Mohamed, "Novel approach for optimum coordination of overcurrent relays to enhance microgrid earth fault protection scheme," Sustainable Cities and Society, vol. 54, p. 102006, 2020/03/01/ 2020, doi: [DOI:10.1016/j.scs.2019.102006.]
38. [6] A. Yazdaninejadi, D. Nazarpour, and S. Golshannavaz, "Sustainable electrification in critical infrastructure: Variable characteristics for overcurrent protection considering DG stability," Sustainable Cities and Society, vol. 54, p. 102022, 2020, doi: [DOI:10.1016/j.scs.2020.102022.]
39. [7] M. N. Alam, B. Das, and V. Pant, "Protection coordination scheme for directional overcurrent relays considering change in network topology and OLTC tap position," Electric Power Systems Research, vol. 185, p. 106395, 2020, doi: [DOI:10.1016/j.epsr.2020.106395.]
40. [8] H. Kazemi Karegar and A. Abbasi, "appropriation of differential protection for optimal protection of active distribution networks under different configurations," ieijqp, vol. 7, no. 2, pp. 113-121, 2019. [Online]. Available: http://ieijqp.ir/article-1-554-fa.html.
41. [9] A. Elmitwally, M. S. Kandil, E. Gouda, and A. Amer, "Mitigation of DGs Impact on Variable-Topology Meshed Network Protection System by Optimal Fault Current Limiters Considering Overcurrent Relay Coordination," Electric Power Systems Research, vol. 186, p. 106417, 2020, doi: [DOI:10.1016/j.epsr.2020.106417.]
42. [10] M. H. Sadeghi, A. Dastfan, and Y. Damchi, "Robust and adaptive coordination approaches for co-optimization of voltage dip and directional overcurrent relays coordination," International Journal of Electrical Power & Energy Systems, vol. 129, p. 106850, 2021, doi: [DOI:10.1016/j.ijepes.2021.106850.]
43. [11] T. Amraee, A. Ranjbar, and B. Mozaffari, "Multi-Stage Under Frequency Load Shedding Relay in Islanded Distribution Systems," ku-energy, vol. 7, no. 4, pp. 2-11, 2018. [Online]. Available: http://energy.kashanu.ac.ir/article-1-685-fa.html.
44. [12] J. P. Nascimento, N. S. D. Brito, and B. A. Souza, "An adaptive overcurrent protection system applied to distribution systems," Computers & Electrical Engineering, vol. 81, p. 106545, 2020, doi: [DOI:10.1016/j.compeleceng.2019.106545.]
45. [13] A. J. Urdaneta, L. G. Perez, and H. Restrepo, "Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology," IEEE Transactions on Power Delivery, vol. 12, no. 4, pp. 1458-1464, 1997, doi: 10.1109/61.634161.
46. [14] "Evaluation of effectiveness of uncertainty in communication links on the adaptive protection schemes," ieijqp, vol. 6, no. 1, pp. 8-19, 2017. [Online]. Available: http://ieijqp.ir/article-1-363-fa.html.
47. [15] M. N. Alam, "Adaptive Protection Coordination Scheme Using Numerical Directional Overcurrent Relays," IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 64-73, 2019, doi: 10.1109/TII.2018.2834474.
48. [16] A. Darabi, M. Bagheri, and G. B. Gharehpetian, "Highly reliable overcurrent protection scheme for highly meshed power systems," International Journal of Electrical Power & Energy Systems, vol. 119, p. 105874, 2020, doi: [DOI:10.1016/j.ijepes.2020.105874.]
49. [17] H. M. Sharaf, H. H. Zeineldin, and E. El-Saadany, "Protection Coordination for Microgrids With Grid-Connected and Islanded Capabilities Using Communication Assisted Dual Setting Directional Overcurrent Relays," IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 143-151, 2018, doi: 10.1109/TSG.2016.2546961.
50. [18] A. M. Entekhabi-Nooshabadi, H. Hashemi-Dezaki, and S. A. Taher, "Optimal microgrid’s protection coordination considering N-1 contingency and optimum relay characteristics," Applied Soft Computing, vol. 98, p. 106741, 2021, doi: [DOI:10.1016/j.asoc.2020.106741.]
51. [19] K. A. Saleh, H. H. Zeineldin, and E. F. El-Saadany, "Optimal Protection Coordination for Microgrids Considering N-1 Contingency," IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2270-2278, 2017, doi: 10.1109/TII.2017.2682101.
52. [20] A. Samadi and R. Mohammadi Chabanloo, "Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups," International Journal of Electrical Power & Energy Systems, vol. 120, p. 106026, 2020, doi: [DOI:10.1016/j.ijepes.2020.106026.]
53. [21] T. S. Aghdam, H. K. Karegar, and H. H. Zeineldin, "Optimal Coordination of Double-Inverse Overcurrent Relays for Stable Operation of DGs," IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 183-192, 2019, doi: 10.1109/TII.2018.2808264.
54. [22] S.-A. Ahmadi, H. Karami, and B. Gharehpetian, "Comprehensive coordination of combined directional overcurrent and distance relays considering miscoordination reduction," International Journal of Electrical Power & Energy Systems, vol. 92, pp. 42-52, 2017, doi: [DOI:10.1016/j.ijepes.2017.04.008.]
55. [23] M. N. Alam, "Overcurrent protection of AC microgrids using mixed characteristic curves of relays," Computers & Electrical Engineering, vol. 74, pp. 74-88, 2019, doi: [DOI:10.1016/j.compeleceng.2019.01.003.]
56. [24] A. Narimani and H. Hashemi-Dezaki, "Optimal stability-oriented protection coordination of smart grid’s directional overcurrent relays based on optimized tripping characteristics in double-inverse model using high-set relay," International Journal of Electrical Power & Energy Systems, vol. 133, p. 107249, 2021, doi: [DOI:10.1016/j.ijepes.2021.107249.]
57. [25] H. R. E. H. Bouchekara, M. Zellagui, and M. A. Abido, "Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm," Applied Soft Computing, vol. 54, pp. 267-283, 2017, doi: [DOI:10.1016/j.asoc.2017.01.037.]
58. [26] A. Chandra and A. K. Pradhan, "Model-free angle stability assessment using wide area measurements," International Journal of Electrical Power & Energy Systems, vol. 120, p. 105972, 2020, doi: [DOI:10.1016/j.ijepes.2020.105972.]
59. [27] J. D. Pico, D. Celeita, and G. Ramos, "Protection Coordination Analysis Under a Real-Time Architecture for Industrial Distribution Systems Based on the Std IEEE 242-2001," IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2826-2833, 2016, doi: 10.1109/TIA.2016.2538739.
60. [28] J. Andruszkiewicz, J. Lorenc, B. Staszak, A. Weychan, and B. Zięba, "Overcurrent protection against multi-phase faults in MV networks based on negative and zero sequence criteria," International Journal of Electrical Power & Energy Systems, vol. 134, p. 107449, 2022, doi: [DOI:10.1016/j.ijepes.2021.107449.]
61. [29] S. S. Fatemi and H. Samet, "Considering DGs Voltage Protection in Optimal Coordination of Directional Overcurrent Relays to Minimize the Energy Not Supplied," IEEE Systems Journal, pp. 1-9, 2020, doi: 10.1109/JSYST.2020.3001378.
62. [30] P. Mishra, A. K. Pradhan, and P. Bajpai, "A Positive Sequence Relaying Method for Solar Photovoltaic Integrated Distribution System," IEEE Transactions on Power Delivery, pp. 1-1, 2020, doi: 10.1109/TPWRD.2020.3044330.
63. [31] S. K. ElSayed and E. E. Elattar, "Hybrid Harris hawks optimization with sequential quadratic programming for optimal coordination of directional overcurrent relays incorporating distributed generation," Alexandria Engineering Journal, vol. 60, no. 2, pp. 2421-2433, 2021, doi: [DOI:10.1016/j.aej.2020.12.028.]
64. [32] S. Khatua and V. Mukherjee, "Adaptive overcurrent protection scheme suitable for station blackout power supply of nuclear power plant operated through an integrated microgrid," Electric Power Systems Research, vol. 192, p. 106934, 2021, doi: [DOI:10.1016/j.epsr.2020.106934.]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shamsi M, Hashemi-Dezaki H. Optimal Adaptive Protection of Active Distribution Networks Using Optimized Selection of Standard Characteristics for Directional Overcurrent relays Considering Limits of Setting Groups’ Number. ieijqp 2022; 11 (3) :1-18
URL: http://ieijqp.ir/article-1-877-fa.html

شمسی محمد، هاشمی دزکی حامد. حفاظت تطبیقی بهینه شبکه های توزیع فعال با انتخاب منحنی مشخصه استاندارد بهینه رله های اضافه جریان جهت دار و درنظرگیری محدودیت در تعداد گروه های تنظیم. نشریه کیفیت و بهره وری صنعت برق ایران. 1401; 11 (3) :1-18

URL: http://ieijqp.ir/article-1-877-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 3 - ( 3-1401 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 39 queries by YEKTAWEB 4645