[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 4 (11-2022) ::
ieijqp 2022, 11(4): 75-87 Back to browse issues page
Sensitivity Analysis in Multi-Carrier Energy Systems Considering Operation Costs Minimization
Mehrdad Mahmoudian1 , Sajad Sadi * 2, Alireza Karimi2 , Javad Gholami2
1- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran
2- Department of mechanical engineering, Imam Hossein Comprehensive University, Tehran, Iran
Abstract:   (1503 Views)
Multi-carrier energy systems play an important role in reconfigured power networks. According to the recent researches, only the energy carriers modeling and system optimization are taken into account, however the sensitivity analysis of output parameters due to input variables variations considering price risk, are being studied in this paper. The sensitivity analysis make the independent system operator (ISO) very precisionist to the carriers-based decisions. In other word, the ISO and the whole control system have to be able to determine each share of all energy carriers considering emergency conditions or passive defense, low consumption and high efficiency. This goal will be achieved through energy carriers sharing variations to compensate the lack of the other resources. All of thermal and electrical demand are procured and the energy not supplies will be calculated in each scenario. The risk modeling used in this study is formulated based on conditional value at risk (CVaR) in four weeks time horizon.
Keywords: Sensitivity analysis, operation costs, multi-carrier energy systems, GAMS.
Full-Text [PDF 1108 kb]   (634 Downloads)    
Type of Study: Research |
Received: 2021/12/21 | Accepted: 2022/12/31 | Published: 2022/11/1
References
1. [1] Brahman, F., Honarmand, M. and Jadid, S., 2015. Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings, 90, pp.65-75. [DOI:10.1016/j.enbuild.2014.12.039]
2. [2] Zhang, X., Shahidehpour, M., Alabdulwahab, A. and Abusorrah, A., 2015. Optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Transactions on Smart Grid, 6(5), pp.2302-2311. [DOI:10.1109/TSG.2015.2390640]
3. [3] Orehounig, K., Evins, R., & Dorer, V. (2015). Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Applied Energy, 154, 277-289. [DOI:10.1016/j.apenergy.2015.04.114]
4. [4] Bahrami, S. and Sheikhi, A., 2016. From Demand Response in Smart Grid Toward Integrated Demand Response in Smart Energy Hub. IEEE Trans. Smart Grid, 7(2), pp.650-658. [DOI:10.1109/TSG.2015.2464374]
5. [5] Moghaddam, I.G., Saniei, M. and Mashhour, E., 2016. A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building. Energy, 94, pp.157-170. [DOI:10.1016/j.energy.2015.10.137]
6. [6] Pazouki, S. and Haghifam, M.R., 2016. Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. International Journal of Electrical Power & Energy Systems, 80, pp.219-239. [DOI:10.1016/j.ijepes.2016.01.044]
7. [7] Vahid-Pakdel, M.J., Nojavan, S., Mohammadi-Ivatloo, B. and Zare, K., 2017. Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Conversion and Management, 145, pp.117-128. [DOI:10.1016/j.enconman.2017.04.074]
8. [8] Pazouki, S., Haghifam, M.R. and Moser, A., 2014. Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. International Journal of Electrical Power & Energy Systems, 61, pp.335-345. [DOI:10.1016/j.ijepes.2014.03.038]
9. [9] Ma, T., Wu, J. and Hao, L., 2017. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub. Energy conversion and management, 133, pp.292-306. [DOI:10.1016/j.enconman.2016.12.011]
10. [10] Dolatabadi, A. and Mohammadi-Ivatloo, B., 2017. Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response. Applied Thermal Engineering, 123, pp.40-49. [DOI:10.1016/j.applthermaleng.2017.05.069]
11. [11] Dolatabadi, A., Jadidbonab, M. and Mohammadi-ivatloo, B., 2018. Short-term scheduling strategy for wind-based energy hub: a hybrid stochastic/IGDT approach. IEEE Transactions on Sustainable Energy. [DOI:10.1109/TSTE.2017.2788086]
12. [12] Biglia, A., Caredda, F.V., Fabrizio, E., Filippi, M. and Mandas, N., 2017. Technical-economic feasibility of CHP systems in large hospitals through the Energy Hub method: The case of Cagliari AOB. Energy and Buildings, 147, pp.101-112. [DOI:10.1016/j.enbuild.2017.04.047]
13. [13] Maroufmashat, A., Sattari, S., Roshandel, R., Fowler, M. and Elkamel, A., 2016. Multi-objective optimization for design and operation of distributed energy systems through the multi-energy hub network approach. Industrial & Engineering Chemistry Research, 55(33), pp.8950-8966. [DOI:10.1021/acs.iecr.6b01264]
14. [14] Wasilewski, J., 2015. Integrated modeling of microgrid for steady-state analysis using modified concept of multi-carrier energy hub. International Journal of Electrical Power & Energy Systems, 73, pp.891-898. [DOI:10.1016/j.ijepes.2015.06.022]
15. [15] Ayele, G.T., Haurant, P., Laumert, B. and Lacarrière, B., 2018. An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating. Applied Energy, 212, pp.850-867. [DOI:10.1016/j.apenergy.2017.12.090]
16. [16] Sharif, A., Almansoori, A., Fowler, M., Elkamel, A. and Alrafea, K., 2014. Design of an energy hub based on natural gas and renewable energy sources. International Journal of Energy Research, 38(3), pp.363-373. [DOI:10.1002/er.3050]
17. [17] Dolatabadi, A. and Mohammadi-Ivatloo, B., 2017. Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response. Applied Thermal Engineering, 123, pp.40-49. [DOI:10.1016/j.applthermaleng.2017.05.069]
18. [18] Soroudi, A. and Keane, A., 2015. Risk averse energy hub management considering plug-in electric vehicles using information gap decision theory. In Plug in electric vehicles in smart grids (pp. 107-127). Springer, Singapore. [DOI:10.1007/978-981-287-302-6_5]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudian M, Sadi S, Karimi A, Gholami J. Sensitivity Analysis in Multi-Carrier Energy Systems Considering Operation Costs Minimization. ieijqp 2022; 11 (4) :75-87
URL: http://ieijqp.ir/article-1-871-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 4 (11-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4660