[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 3 (5-2022) ::
ieijqp 2022, 11(3): 48-60 Back to browse issues page
Simultaneous Hardening Planning of Lines and Substations for Resilience Enhancement of Electric Power Distribution System against Dust Storms
Morteza Haghshenas1 , Rahmat-Allah Hooshmand * 1, Mehdi Gholipour1
1- Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
Abstract:   (2286 Views)

Resilience characteristics in power systems refer to the system's ability to withstand against severe disturbances with a low probability of occurrence. As extreme dust storms in the south and southwest in recent years have caused heavy damage to the IRAN's electricity industry, in this paper, a bi-level planning model is proposed to simultaneous hardening of distribution lines and substations against this phenomenon. In the first and second levels of the proposed model, the investment costs of distribution system hardening and total expected operating costs are minimized subject to financial and operational constraints, respectively. The planning results in different case studies have shown that the simultaneous hardening planning of substations and distribution lines can, in addition to reducing operating costs in the emergency conditions, play a significant role in reducing investment costs. The proposed model is implemented on a large-scale power distribution system in Khuzestan province, and the simulation results confirm the efficiency of the proposed scheme at different budget levels.

Keywords: Extreme dust storms, Dust, Insulators flashover, Resiliency, Mixed integer linear programming.
Full-Text [PDF 2610 kb]   (257 Downloads)    
Type of Study: Research |
Received: 2021/10/12 | Accepted: 2022/06/20 | Published: 2022/05/31
References
1. Ahvaz Weather (2021). Available online: https://www. worldweatheronline.com/ahvazweatheraverages/khzestan/ir.asx
2. Alemohammad, S. H., Mashhour, E., Saniei, M. (2015) "A market-based method for reconfiguration of distribution network, Electric Power System Research, 125(1), 15-22. [DOI:10.1016/j.epsr.2015.03.014]
3. Aminifar, F., Farhoumandi, M. (2018). Concepts and Fundamentals of Resilience Assessment in Electric Power Grids, Journal of Iranian Association of Electrical and Electronics Engineers, 15(3), 83-91.
4. Amirioun, M. H., Aminifar, F., Lesani, H. (2018). Resilience-oriented proactive management of microgrids against windstorms, IEEE Transaction on Power Systems, 33(4), 4275-4284. [DOI:10.1109/TPWRS.2017.2765600]
5. Arab, A., Khodaei, A., Khator, S. K., Ding, K., Emesih, V. A., Han, Z. (2015). Stochastic pre-hurricane restoration planning for electric power systems infrastructure, IEEE Transaction on Smart Grids, 6(2), 1046-1054. [DOI:10.1109/TSG.2015.2388736]
6. Arif, A., Wang, Z., Wang, J., Chen, C. (2018). Power distribution system outage management with co-optimization of repairs, reconfiguration, and DG dispatch, IEEE Transaction on Smart Grid, 9(5), 4109-4118. [DOI:10.1109/TSG.2017.2650917]
7. Arshad, Nekahi, A., McMeekin, S.G., Farzaneh, M. (2017). Effect of pollution severity and dry band location on the flashover characteristics of silicone-rubber surfaces, Electrical Engineering, 99(1), 1053-1063. [DOI:10.1007/s00202-016-0473-3]
8. BSA, (2021). Available online: http://www.baspar-sazeh. com/index.php/en/
9. Chen, X., Su, W., Kavousi-Fard, A., Skowronska, A. G., Mourelatos, Z. P., Hu, Z. (2021). Resilient microgrid system design for disaster impact mitigation, Sustainable and Resilient Infrastructure, 6(1-2), 56-72. [DOI:10.1080/23789689.2019.1708176]
10. Gao, H., Chen, Y., Mei, S., Huang, S., Xu, Y. (2017). Resilience-oriented prehurricane resource allocation in distribution systems considering electric buses, Proceedings of the IEEE, 105(7), 1214-1233. [DOI:10.1109/JPROC.2017.2666548]
11. Gholami, A., Shekari, T., Amirioun, M. H., Aminifar, F., Amini, M. H., Sargolzaei, A. (2018). Toward a consensus on the definition and taxonomy of power system resilience, IEEE Access, 6(1), 32035-32053. [DOI:10.1109/ACCESS.2018.2845378]
12. Gritzalis D., Theocharidou M., Stergiopoulos G. (2019). Critical infrastructure security and resilience, 1st Edition, Switzerland, Springer. [DOI:10.1007/978-3-030-00024-0]
13. Haghshenas, M., Hooshmand, R-A., Gholipour, M. (2022). Power Distribution System Resilience Enhancement Planning against Extreme Dust Storms via Pre- and Post-Event Actions Considering Uncertainties, Sustainable Cities and Society, 78(1), 1-19. [DOI:10.1016/j.scs.2021.103626]
14. Hamza, A. S. H. A., Abdelgawad, N. M. K., Arafa, B. A. (2002). Effect of desert environmental conditions on the flashover voltage of insulators, Energy Conversion and Management, 43(17), 2437-2442. [DOI:10.1016/S0196-8904(01)00174-1]
15. Iran-Insulator, (2021). Available online: https://iran insulator.com/en/36-kv-pin-insulator-code0309/
16. Jufri, F. H., Widiputra, V., Jung, J. (2019). State-of-the-art review on power grid resilience to extreme weather events, Applied Energy, 239(1), 1049-1065. [DOI:10.1016/j.apenergy.2019.02.017]
17. Khajeheian, D., Pasandideh, A., Ghanbary, S. (2018). Media and Crisis: Media Representation of Massive Power Outage Crisis in Khuzestan Province (Feb. 2017), Disaster Prevention and Management Knowledge, 8(3), 1-21.
18. Li, J., Ma, X., Liu, C., Schneider, K. P. (2014). Distribution System Restoration with Microgrids Using Spanning Tree Search, IEEE Transaction on Power Systems, 29(1), 3021-3029. [DOI:10.1109/TPWRS.2014.2312424]
19. Lin, Y., Bie, Z. (2018). Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding, Applied Energy, 210(1), 1266-1279. [DOI:10.1016/j.apenergy.2017.06.059]
20. Ma, S., Li, S., Wang, Z., Qiu, F. (2019). Resilience-Oriented Design of Distribution Systems, IEEE Transactions on Power Systems, 34(4), 2880-2891. [DOI:10.1109/TPWRS.2019.2894103]
21. Ma, S., Su, L., Wang, Z., Qiu, F., Guo, G. (2018). Resilience enhancement of distribution grids against extreme weather events, IEEE Transaction on Power Systems, 33(5), 4842-4853. [DOI:10.1109/TPWRS.2018.2822295]
22. Meibodi, A.E., Ghahreman, A., Taklif, A., Morshedi, A. (Jul. 2015). Economic Modeling of the Regional Polices to Combat Dust Phenomenon by Using Game Theory, Int. Conference on Applied Economics, Kazan, Russia. [DOI:10.1016/S2212-5671(15)00697-8]
23. NERC (2021). Reliability standards for the bulk electric systems of North America, North American Electric Reliability Corporation.
24. Panteli, M., Trakas, D. N., Mancarella, P., Hatziargyriou, N. D. (2017). Power systems resilience assessment: Hardening and smart operational enhancement strategies, Proceedings of the IEEE, 105(7), 1202-1213. [DOI:10.1109/JPROC.2017.2691357]
25. Qureshi, M. I., Al-Arainy, A. A., Malik, N. H. (1994). Influence of sand/dust contamination on the breakdown of asymmetrical air gaps under switching impulses, IEEE Transactions on Dielectrics and Electrical Insulation, 1(2), 305-314. [DOI:10.1109/94.300263]
26. Rashki, A., Middleton, N. J., Goudie, A. S. (2021). Dust storms in Iran-Distribution, causes, frequencies and impacts, Aeolian Research, 48(1), 1-17. [DOI:10.1016/j.aeolia.2020.100655]
27. Shariati, M. R., Moradian, A. R., Rezaei, M., Vaseai, S. J. A. (Aug. 2005). Providing the Pollution Map in South West Provinces of Iran Based on DDG Method, IEEE/PES Transmission and Distribution Conference: Asia and Pacific, Dalian, China.
28. Shariatinasab, R., Saghafi, S., Khorashadizadeh, M., Ghayedi, M (2020). Probabilistic assessment of insulator failure under contaminated conditions, IET Science, Measurement & Technology, 14(5), 557-563. [DOI:10.1049/iet-smt.2019.0179]
29. Soroudi, A. (2017). Power System Optimization Modeling in GAMS, 1st Edition, Switzerland, Springer. [DOI:10.1007/978-3-319-62350-4_1]
30. Statista (2022). Global inflation rate from 2016 to 2026. Available online: https://www.statista.com/statistics/ 256598/global-inflation-rate-compared-to-previous year/
31. UNEP (2016). Global Assessment of Sand and Dust Storms, United Nations Environment Programme, Nairobi.
32. Wu, X., Conejo, A. J. (2016). An efficient tri-level optimization model for electric grid defense planning, IEEE Transaction on Power Systems, 32(4), 2984-2994. [DOI:10.1109/TPWRS.2016.2628887]
33. Xu, Y., Dong, Z. Y., Zhang, R., Hill, D. J. (2017). Multi-Timescale Coordinated Voltage/Var Control of High Renewable-Penetrated Distribution Systems, IEEE Transaction Power Systems, 32(6), 1498-4408. [DOI:10.1109/TPWRS.2017.2669343]
34. Yamangil, E., Bent, R., Backhaus, S. (Jan. 2015). Resilient upgrade of electrical distribution grids, 29th Conference on Artificial Intelligence, Texas, USA. [DOI:10.1609/aaai.v29i1.9369]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghshenas M, Hooshmand R, Gholipour M. Simultaneous Hardening Planning of Lines and Substations for Resilience Enhancement of Electric Power Distribution System against Dust Storms. ieijqp 2022; 11 (3) :48-60
URL: http://ieijqp.ir/article-1-856-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 3 (5-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.08 seconds with 40 queries by YEKTAWEB 4645