[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 10, Issue 4 (1-2022) ::
ieijqp 2022, 10(4): 47-63 Back to browse issues page
Modern Power System Frequency Response Evaluation with Virtual Power Plant Penetration
Hamzeh Eisazadeh1, Maziar MirHosseini Moghaddam * 1, Behnam Alizadeh1
1- - Department of Electrical Engineering, Lahijan branch, Islamic Azad University, Lahijan, Iran
Abstract:   (1816 Views)
 New power systems based on virtual power plants (VPPs) will expand in the future, so it is of crucial importance for system operators to analyze the frequency behavior of these systems compared to current systems in the field of disruptions. In this paper, the equations of the frequency response model of conventional power systems are expanded by considering VPPs and their effective components, and a new model is presented for the frequency response of large power systems based on VPPs. To analyze the frequency behavior of the network, different scenarios are studied on a sample network. To cover the possible situations of the future network, several VPP models with different specifications are considered from the perspective of frequency responsiveness. The simulation results indicate the necessity of using frequency responsive devices in future power networks that are based on VPP.
Article number: 47
Keywords: Modern Power System, Frequency Response, Automatic Generation Control, Virtual Power Plant.
Full-Text [PDF 1692 kb]   (490 Downloads)    
Type of Study: Research |
Received: 2021/04/19 | Accepted: 2021/06/1 | Published: 2021/06/27
1. [1] J. Nikonowicsz, Lucasz; Milewski, "Virtual Power Plants - general review : structure , application and," J. Power Technol., vol. 92, no. 3, pp. 135-149, 2012.
2. [2] P. Ferraro, E. Crisostomi, M. Raugi, and F. Milano, "Analysis of the Impact of Microgrid Penetration on Power System Dynamics," IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4101-4109, 2017, doi: 10.1109/TPWRS.2016.2645662. [DOI:10.1109/TPWRS.2016.2645662]
3. [3] P. Tielens and D. Van Hertem, "The relevance of inertia in power systems," Renew. Sustain. Energy Rev., vol. 55, no. 2016, pp. 999-1009, 2016, doi: 10.1016/j.rser.2015.11.016. [DOI:10.1016/j.rser.2015.11.016]
4. [4] P. J. C. Vogler-Finck and W. G. Früh, "Evolution of primary frequency control requirements in Great Britain with increasing wind generation," Int. J. Electr. Power Energy Syst., vol. 73, pp. 377-388, 2015, doi: 10.1016/j.ijepes.2015.04.012. [DOI:10.1016/j.ijepes.2015.04.012]
5. [5] G. Strbac, A. Shakoor, M. Black, D. Pudjianto, and T. Bopp, "Impact of wind generation on the operation and development of the UK electricity systems," Electr. Power Syst. Res., vol. 77, no. 9, pp. 1214-1227, 2007, doi: 10.1016/j.epsr.2006.08.014. [DOI:10.1016/j.epsr.2006.08.014]
6. [6] M. S. Alam et al., "High-level renewable energy integrated system frequency control with smes-based optimized fractional order controller," Electron., vol. 10, no. 4, pp. 1-21, 2021, doi: 10.3390/electronics10040511. [DOI:10.3390/electronics10040511]
7. [7] K. Arora, A. Kumar, V. K. Kamboj, D. Prashar, B. Shrestha, and G. P. Joshi, "Impact of renewable energy sources into multi area multi-source load frequency control of interrelated power system," Mathematics, vol. 9, no. 2, pp. 1-21, 2021, doi: 10.3390/math9020186. [DOI:10.3390/math9020186]
8. [8] H. Golpîra, H. Seifi, A. R. Messina, and M. R. Haghifam, "Maximum Penetration Level of Micro-Grids in Large-Scale Power Systems: Frequency Stability Viewpoint," IEEE Trans. Power Syst., vol. 31, no. 6, pp. 5163-5171, 2016, doi: 10.1109/TPWRS.2016.2538083. [DOI:10.1109/TPWRS.2016.2538083]
9. [9] Z. A. Obaid, L. M. Cipcigan, L. Abrahim, and M. T. Muhssin, "Frequency control of future power systems: reviewing and evaluating challenges and new control methods," J. Mod. Power Syst. Clean Energy, vol. 7, no. 1, pp. 9-25, 2019, doi: 10.1007/s40565-018-0441-1. [DOI:10.1007/s40565-018-0441-1]
10. [10] A. Aziz, A. T. Oo, and A. Stojcevski, "Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system," Int. J. Electr. Power Energy Syst., vol. 99, no. January, pp. 603-617, 2018, doi: 10.1016/j.ijepes.2018.01.045. [DOI:10.1016/j.ijepes.2018.01.045]
11. [11] M. Hajiakbari Fini and M. E. Hamedani Golshan, "Frequency control using loads and generators capacity in power systems with a high penetration of renewables," Electr. Power Syst. Res., vol. 166, no. September 2018, pp. 43-51, 2019, doi: 10.1016/j.epsr.2018.09.010. [DOI:10.1016/j.epsr.2018.09.010]
12. [12] M. Khan, H. Sun, Y. Xiang, and D. Shi, "Electric vehicles participation in load frequency control based on mixed H2/H∞," Int. J. Electr. Power Energy Syst., vol. 125, no. June 2020, p. 106420, 2021, doi: 10.1016/j.ijepes.2020.106420. [DOI:10.1016/j.ijepes.2020.106420]
13. [13] H. W. Qazi and D. Flynn, "Analysing the impact of large-scale decentralised demand side response on frequency stability," Int. J. Electr. Power Energy Syst., vol. 80, pp. 1-9, 2016, doi: 10.1016/j.ijepes.2015.11.115. [DOI:10.1016/j.ijepes.2015.11.115]
14. [14] X. Wu, W. Pei, W. Deng, L. Kong, and H. Ye, "Collaborative Optimal Distribution Strategy of AGC with Participation of ESS and Controllable Load," Energy Procedia, vol. 145, pp. 103-108, 2018, doi: 10.1016/j.egypro.2018.04.017. [DOI:10.1016/j.egypro.2018.04.017]
15. [15] S. Pulendran and J. E. Tate, "Energy storage system control for prevention of transient under-frequency load shedding," IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 927-936, 2017, doi: 10.1109/TSG.2015.2476963. [DOI:10.1109/TSG.2015.2476963]
16. [16] M. Cheng, S. S. Sami, and J. Wu, "Benefits of using virtual energy storage system for power system frequency response," Appl. Energy, vol. 194, pp. 376-385, 2017, doi: 10.1016/j.apenergy.2016.06.113. [DOI:10.1016/j.apenergy.2016.06.113]
17. [17] P. Mc Namara and F. Milano, "Efficient implementation of MPC-based AGC for real-world systems with low inertia," Electr. Power Syst. Res., vol. 158, pp. 315-323, 2018, doi: 10.1016/j.epsr.2018.01.017. [DOI:10.1016/j.epsr.2018.01.017]
18. [18] P. M. Anderson and M. Mirheydar, "A low-order system frequency response model," IEEE Trans. Power Syst., vol. 5, no. 3, pp. 720-729, 1990, doi: 10.1109/59.65898. [DOI:10.1109/59.65898]
19. [19] H. Bevrani, A. Ghosh, and G. Ledwich, "Renewable energy sources and frequency regulation: Survey and new perspectives," IET Renew. Power Gener., vol. 4, no. 5, pp. 438-457, 2010, doi: 10.1049/iet-rpg.2009.0049. [DOI:10.1049/iet-rpg.2009.0049]
20. [20] H. Bevrani, Robust Power System Frequency Control. 2009. [DOI:10.1007/978-0-387-84878-5]
21. [21] C. Pradhan and C. N. Bhende, "Online load frequency control in wind integrated power systems using modified Jaya optimization," Eng. Appl. Artif. Intell., vol. 77, no. October 2018, pp. 212-228, 2019, doi: 10.1016/j.engappai.2018.10.003. [DOI:10.1016/j.engappai.2018.10.003]
22. [22] C. Pradhan and C. N. Bhende, "Frequency Sensitivity Analysis of Load Damping Coefficient in Wind Farm-Integrated Power System," IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1016-1029, 2017, doi: 10.1109/TPWRS.2016.2566918. [DOI:10.1109/TPWRS.2016.2566918]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eisazadeh H, MirHosseini Moghaddam M, Alizadeh B. Modern Power System Frequency Response Evaluation with Virtual Power Plant Penetration. ieijqp. 2022; 10 (4) :47-63
URL: http://ieijqp.ir/article-1-821-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 4 (1-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4419