Modern Power System Frequency Response Evaluation with Virtual Power Plant Penetration

Hamzeh Eisazadeh^{1}, Maziar MirHosseini Moghaddam ^{*} ^{1}, Behnam Alizadeh^{1} 
1  Department of Electrical Engineering, Lahijan branch, Islamic Azad University, Lahijan, Iran 

Abstract: (1816 Views) 
New power systems based on virtual power plants (VPPs) will expand in the future, so it is of crucial importance for system operators to analyze the frequency behavior of these systems compared to current systems in the field of disruptions. In this paper, the equations of the frequency response model of conventional power systems are expanded by considering VPPs and their effective components, and a new model is presented for the frequency response of large power systems based on VPPs. To analyze the frequency behavior of the network, different scenarios are studied on a sample network. To cover the possible situations of the future network, several VPP models with different specifications are considered from the perspective of frequency responsiveness. The simulation results indicate the necessity of using frequency responsive devices in future power networks that are based on VPP. 
Article number: 47 
Keywords: Modern Power System, Frequency Response, Automatic Generation Control, Virtual Power Plant. 

FullText [PDF 1692 kb]
(490 Downloads)

Type of Study: Research 
Received: 2021/04/19  Accepted: 2021/06/1  Published: 2021/06/27





References 
1. [1] J. Nikonowicsz, Lucasz; Milewski, "Virtual Power Plants  general review : structure , application and," J. Power Technol., vol. 92, no. 3, pp. 135149, 2012. 2. [2] P. Ferraro, E. Crisostomi, M. Raugi, and F. Milano, "Analysis of the Impact of Microgrid Penetration on Power System Dynamics," IEEE Trans. Power Syst., vol. 32, no. 5, pp. 41014109, 2017, doi: 10.1109/TPWRS.2016.2645662. [ DOI:10.1109/TPWRS.2016.2645662] 3. [3] P. Tielens and D. Van Hertem, "The relevance of inertia in power systems," Renew. Sustain. Energy Rev., vol. 55, no. 2016, pp. 9991009, 2016, doi: 10.1016/j.rser.2015.11.016. [ DOI:10.1016/j.rser.2015.11.016] 4. [4] P. J. C. VoglerFinck and W. G. Früh, "Evolution of primary frequency control requirements in Great Britain with increasing wind generation," Int. J. Electr. Power Energy Syst., vol. 73, pp. 377388, 2015, doi: 10.1016/j.ijepes.2015.04.012. [ DOI:10.1016/j.ijepes.2015.04.012] 5. [5] G. Strbac, A. Shakoor, M. Black, D. Pudjianto, and T. Bopp, "Impact of wind generation on the operation and development of the UK electricity systems," Electr. Power Syst. Res., vol. 77, no. 9, pp. 12141227, 2007, doi: 10.1016/j.epsr.2006.08.014. [ DOI:10.1016/j.epsr.2006.08.014] 6. [6] M. S. Alam et al., "Highlevel renewable energy integrated system frequency control with smesbased optimized fractional order controller," Electron., vol. 10, no. 4, pp. 121, 2021, doi: 10.3390/electronics10040511. [ DOI:10.3390/electronics10040511] 7. [7] K. Arora, A. Kumar, V. K. Kamboj, D. Prashar, B. Shrestha, and G. P. Joshi, "Impact of renewable energy sources into multi area multisource load frequency control of interrelated power system," Mathematics, vol. 9, no. 2, pp. 121, 2021, doi: 10.3390/math9020186. [ DOI:10.3390/math9020186] 8. [8] H. Golpîra, H. Seifi, A. R. Messina, and M. R. Haghifam, "Maximum Penetration Level of MicroGrids in LargeScale Power Systems: Frequency Stability Viewpoint," IEEE Trans. Power Syst., vol. 31, no. 6, pp. 51635171, 2016, doi: 10.1109/TPWRS.2016.2538083. [ DOI:10.1109/TPWRS.2016.2538083] 9. [9] Z. A. Obaid, L. M. Cipcigan, L. Abrahim, and M. T. Muhssin, "Frequency control of future power systems: reviewing and evaluating challenges and new control methods," J. Mod. Power Syst. Clean Energy, vol. 7, no. 1, pp. 925, 2019, doi: 10.1007/s4056501804411. [ DOI:10.1007/s4056501804411] 10. [10] A. Aziz, A. T. Oo, and A. Stojcevski, "Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system," Int. J. Electr. Power Energy Syst., vol. 99, no. January, pp. 603617, 2018, doi: 10.1016/j.ijepes.2018.01.045. [ DOI:10.1016/j.ijepes.2018.01.045] 11. [11] M. Hajiakbari Fini and M. E. Hamedani Golshan, "Frequency control using loads and generators capacity in power systems with a high penetration of renewables," Electr. Power Syst. Res., vol. 166, no. September 2018, pp. 4351, 2019, doi: 10.1016/j.epsr.2018.09.010. [ DOI:10.1016/j.epsr.2018.09.010] 12. [12] M. Khan, H. Sun, Y. Xiang, and D. Shi, "Electric vehicles participation in load frequency control based on mixed H2/H∞," Int. J. Electr. Power Energy Syst., vol. 125, no. June 2020, p. 106420, 2021, doi: 10.1016/j.ijepes.2020.106420. [ DOI:10.1016/j.ijepes.2020.106420] 13. [13] H. W. Qazi and D. Flynn, "Analysing the impact of largescale decentralised demand side response on frequency stability," Int. J. Electr. Power Energy Syst., vol. 80, pp. 19, 2016, doi: 10.1016/j.ijepes.2015.11.115. [ DOI:10.1016/j.ijepes.2015.11.115] 14. [14] X. Wu, W. Pei, W. Deng, L. Kong, and H. Ye, "Collaborative Optimal Distribution Strategy of AGC with Participation of ESS and Controllable Load," Energy Procedia, vol. 145, pp. 103108, 2018, doi: 10.1016/j.egypro.2018.04.017. [ DOI:10.1016/j.egypro.2018.04.017] 15. [15] S. Pulendran and J. E. Tate, "Energy storage system control for prevention of transient underfrequency load shedding," IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 927936, 2017, doi: 10.1109/TSG.2015.2476963. [ DOI:10.1109/TSG.2015.2476963] 16. [16] M. Cheng, S. S. Sami, and J. Wu, "Benefits of using virtual energy storage system for power system frequency response," Appl. Energy, vol. 194, pp. 376385, 2017, doi: 10.1016/j.apenergy.2016.06.113. [ DOI:10.1016/j.apenergy.2016.06.113] 17. [17] P. Mc Namara and F. Milano, "Efficient implementation of MPCbased AGC for realworld systems with low inertia," Electr. Power Syst. Res., vol. 158, pp. 315323, 2018, doi: 10.1016/j.epsr.2018.01.017. [ DOI:10.1016/j.epsr.2018.01.017] 18. [18] P. M. Anderson and M. Mirheydar, "A loworder system frequency response model," IEEE Trans. Power Syst., vol. 5, no. 3, pp. 720729, 1990, doi: 10.1109/59.65898. [ DOI:10.1109/59.65898] 19. [19] H. Bevrani, A. Ghosh, and G. Ledwich, "Renewable energy sources and frequency regulation: Survey and new perspectives," IET Renew. Power Gener., vol. 4, no. 5, pp. 438457, 2010, doi: 10.1049/ietrpg.2009.0049. [ DOI:10.1049/ietrpg.2009.0049] 20. [20] H. Bevrani, Robust Power System Frequency Control. 2009. [ DOI:10.1007/9780387848785] 21. [21] C. Pradhan and C. N. Bhende, "Online load frequency control in wind integrated power systems using modified Jaya optimization," Eng. Appl. Artif. Intell., vol. 77, no. October 2018, pp. 212228, 2019, doi: 10.1016/j.engappai.2018.10.003. [ DOI:10.1016/j.engappai.2018.10.003] 22. [22] C. Pradhan and C. N. Bhende, "Frequency Sensitivity Analysis of Load Damping Coefficient in Wind FarmIntegrated Power System," IEEE Trans. Power Syst., vol. 32, no. 2, pp. 10161029, 2017, doi: 10.1109/TPWRS.2016.2566918. [ DOI:10.1109/TPWRS.2016.2566918]


Eisazadeh H, MirHosseini Moghaddam M, Alizadeh B. Modern Power System Frequency Response Evaluation with Virtual Power Plant Penetration. ieijqp. 2022; 10 (4) :4763 URL: http://ieijqp.ir/article1821en.html
