[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 10, Issue 2 (7-2021) ::
ieijqp 2021, 10(2): 75-87 Back to browse issues page
Design of a non-isolated multi-input converter with soft switching and high step-up voltage gain
Donya Taheri1 , Ghazanfar Shahgholian * 1, Mohammad Mehdi Mirtalaei1
1- Najafabad Branch, Islamic Azad University
Abstract:   (2623 Views)
Energy is one of the most important factors for the economic growth and development of each country. Most of the energy is consumed in the form of electricity. One of the most important ways to generate electricity is to produce electricity through fossil fuels. However, due to their disadvantages such as limitations and concerns about the environment and increased demand for energy, engineers are focusing on renewable energy sources such as Wind turbines, hydro, solar cells, and the use of renewable energies and energy with less pollution is concerned. As we know, the sun is the largest source of energy on Earth, that the energy exported is used in various ways. due to the high cost of the main element of these systems, the use of this type of energy production system alone has no economic justification. Due to the diversification of energy sources and the need to use more than one source of electricity in some applications, it is better to use a multi-input converter instead of a few independent converters because multi-input converters make it easier to reduce the cost and increase efficiency and increase the power conversion capacity due to lower semiconductor elements, lower inductors, and capacitors, and lower control capacities have become. In many applications of multi-input converters, where the terminal output voltage of a specified value should not be greater, non-isolated converters can be used to simultaneously provide high voltage output and high efficiency. Isolation in multi-input converters has advantages and disadvantages that are selected based on the type of system application. Its advantage is the isolation of sources from each other (in multi-input magnetic converters) as well as the load of the sources, which allows the use of different sources with different voltages. Disadvantages of isolation include design problems for transformers with multiple windings, as well as increasing circuit volume. Since energy sources are inherently low voltage, high-step-up techniques are used to increase their voltage gain. In switching converters, to reduce the amount of inductor and capacitor elements, the increase in switching frequency is desirable. But with increasing switching frequency, the switching losses and electromagnetic disturbances increase, which is due to the use of common elements in multi-input transducers, to increase the problems mentioned above than other switching converters. To solve these problems, one of the voltage or current parameters must be limited at the moment of switching so that soft switching can be achieved. In this paper, a high step-up multi-input converter is presented which, using soft switching techniques, the voltage gain of converter can be increased. In this converter, the combination of the inductance coupling method with the voltage multiplier is used to achieve high voltage. Due to the addition of a voltage multiplier cell, the amount of leakage inductor and the ratio of transformer increase and as a result, the circuit volume decreases. To reduce the voltage stress of the main switch, due to leakage inductor energy and also an active clamp circuit is used to provide a soft-switching mode, Switches with low voltage stress and low conductivity can be used by combining these two methods. first, the structure and performance of the proposed converter to design a high step-up multi-input converter, have been thoroughly analyzed and reviewed. To the converter to function properly, the exact converter design method is presented, Finally, the simulation results for different modes show the correctness of the converter operation.
Keywords: Multi-input converter, non-isolated converters, Soft switching, high step-up, coupled inductor
Full-Text [PDF 1229 kb]   (1166 Downloads)    
Type of Study: Research |
Received: 2020/11/21 | Accepted: 2021/06/8 | Published: 2021/07/1
References
1. Ajami, A., Ardi, H., Farakhor, A., (2015). A novel High step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications, IEEE Trans. on Power Electronics, 30(8), pp. 4255-4263. [DOI:10.1109/TPEL.2014.2360495]
2. Azizi, M., Mohamadian, M., Beiranvand, R., (2016). A new family of multi-input converters based on three switches leg, IEEE Trans. on Industrial Electronics, 63(11), pp. 6812-6822. [DOI:10.1109/TIE.2016.2581765]
3. Babaei, E., Abbasi, O., (2016). Structure for multi-input multi-output dc-dc boost converter, IET Power Electronics, 9(1), pp. 9-19. Bairabathina, S., Balamurugan, S., (2020). Review on non-isolated multi-input step-up converters for grid-independent hybrid electric vehicles, International Journal of Hydrogen Energy, 45(41), pp. 21687-21713.https://doi.org/10.1016/j.ijhydene.2020.05.277 [DOI:10.1049/iet-pel.2014.0985]
4. Chen, G., Liu, Y., Qing, X., Wang, F., (2020). Synthesis of integrated multiport dc-dc converters with reduced switches, IEEE Trans. on Industrial Electronics, 67(6), 4536-4546. [DOI:10.1109/TIE.2019.2931214]
5. Delshad, M., Harchegani, A. T., Karimi, M., Mahdavi, M., (Sept. 2016). A new ZVT multi input converter for hybrid sources systems, Proceeding of the IEEE/AE, Pilsen, Czech Republic, pp. 61-64. [DOI:10.1109/AE.2016.7577242]
6. Elserougi, A., Abdelsalam, I., Massoud, A., Ahmed, S., (2019). A bidir¬ecti¬on¬a¬l non-isolated hybrid modular DC-DC converter with zero-voltage switching, Electric Power Systems Research, 167, pp. 277-289. [DOI:10.1016/j.epsr.2018.11.009]
7. Faraji, R., Farzanehfard, H., (2018). Soft-switched nonisolated high step-up three-port DC-DC converter for hybrid energy systems, IEEE Trans. on Power Electronics, 33(12), pp. 10101-10111. [DOI:10.1109/TPEL.2018.2791840]
8. Haghshenas, G., Mirtalaei, S.M.M., Mordmand, H., Shahgholian, G., (2019). High step-up boost-flyback converter with soft switching for photovoltaic applications, Journal of Circuits, Systems, and Computers, 28(1), pp. 1-16. [DOI:10.1142/S0218126619500142]
9. Hajimohammadi, F., Fani, B., Sadeghkhani, I., (2020). Fuse saving scheme in highly photovoltaic‐integrated distribution networks, International Transactions on Electrical Energy Systems, 30(1), e12148. [DOI:10.1002/2050-7038.12148]
10. Harchegani, A. T., Mahdavi. M., (2017). A new soft switching dual input converter for renewable energy systems", Journal of Power Electronics, 17(5), pp. 1127-1136. Hashemi-Zadeh, S. A., Zeidabadi-Nejad, O., Hasani, S., Gharaveisi, A. A., Shahgholian, G., (2012). Optimal DG placement for power loss reduction and improvement voltage profile using smart methods, International Journal of Smart Electrical Engineering, 1(3), 141-147.
11. Jabbari, M., Sharifi, S., Shahgholian, G. (2013). Resonant CLL non-inverting buck-boost converter, Journal of Power Electronics, 13(1), pp. 1-8. [DOI:10.6113/JPE.2013.13.1.1]
12. Kanathipan, K., Moury, S., Lam, J., (March 2017). A fast and accurate maximum power point tracker for a multi-input converter with wide range of soft-switching operation for solar energy systems, Proceeding of the IEEE/APEC, Tampa, FL, USA, pp. 2076-2083. [DOI:10.1109/APEC.2017.7930985]
13. Karthikeyan, V., Gupta, R., (2018). Multiple-input configuration of isolated bidirectional DC-DC converter for power flow control in combinational battery storage, IEEE Trans. on Industrial Informatics, 14(1), pp. 2-11. [DOI:10.1109/TII.2017.2707106]
14. Kharrazi, A., Sreeram, V., Mishra, Y., (2020). Assessment techniques of the impact of grid-tie¬d rooftop photovoltaic generation on the pow¬er quality of low voltage distribution net¬w¬¬ork- A review, Renewable and Sustainable Ene¬¬rgy Reviews, 120, 109643. [DOI:10.1016/j.rser.2019.109643]
15. Khosrogorji, S., Ahmadian, M., Torkaman, H., Soori, S., (2016). Multi-input DC/DC converters in connection with distributed generation units- A review, Renewable and Sustainable Energy Revie¬ws, 66, pp. 360-379. [DOI:10.1016/j.rser.2016.07.023]
16. Kianpour, A., Shahgholian, G., (2017). A floating-output interleaved boost DC-DC converter with high step-up gain, Automatika, 58)1), pp. 18-26. [DOI:10.1080/00051144.2017.1305605]
17. Kown, J. M., Kwon, B. H., (2009). High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems, IEEE Trans. on Power Electronics, 24(1), pp. 108-115. [DOI:10.1109/TPEL.2008.2006268]
18. Lee, S., Kang, B., (2018). Quasi-resonant passive snubber for improving power convers ion efficiency of a dc-dc step-down converter, IEEE Trans. on Power Electronics, 33, pp.2026-2034. [DOI:10.1109/TPEL.2017.2698211]
19. Li, W., He, X., (2011). Review of nonisolated high-step-Up DC/DC converters in photovoltaic grid-connected applications, IEEE Trans. on Industrial Electronics, 58(4), pp. 1239-1250. [DOI:10.1109/TIE.2010.2049715]
20. Liu, Y., Chen, Y., (2009). A systematic approach to synthesizing multi-input DC-DC converters, IEEE Trans. on Power Electronics, 24(1), pp. 116-127. [DOI:10.1109/TPEL.2008.2009170]
21. Mohammadi, M. R., Farzanehfard, H., (2017). Family of soft-switching bidirectional converters with extended ZVS range, IEEE Trans. on Industrial Electronics, 64(9), pp. 7000-7008. [DOI:10.1109/TIE.2017.2686308]
22. Moury, S., Lam, J., Srivastava, V., Church, R., (March 2016). A novel multi-input converter using soft-switched single-switch input modules with integrated power factor correction capability for hybrid renewable energy systems", Proceeding of the IEEE/APEC, Long Beach, CA, USA, pp. 786-793. [DOI:10.1109/APEC.2016.7467961]
23. Muhammad, M., Armstrong, M., Elgendy, M. A., (Oct. 2016). Modelling and control of non-isolated high voltage gain boost converter employing coupled inductor and switched capacitor, Proceeding of the IEEE/ICSAE, pp. 312-317, Newcastle Upon Tyne, UK. [DOI:10.1109/ICSAE.2016.7810209]
24. Rani, P. H., Navasree, S., George, S., Ashok, S., (2019). Fuzzy logic supervisory controller for multi-input non-isolated DC to DC converter connected to DC grid, International Journal of Electrical Power and Energy Systems, 112, pp. 49-60. [DOI:10.1016/j.ijepes.2019.04.018]
25. Reddi, N. K., Ramteke, M. R., Suryawanshi, H. M., Kothapalli, K., Gawande, S. P., (2018). An isolated multi-input ZCS DC-DC front-end-conve¬rter based multilevel inverter for the integration of renewable energy sources, IEEE Trans. on Industry Applications, 54(1), pp. 494-504. [DOI:10.1109/TIA.2017.2753160]
26. Reddi, N. K., Ramteke, M. R., Suryawanshi, H. M., Kothapalli, K., Gawande, S. P., (2018). An isolated multi-input ZCS DC-DC front-end-converter based multilevel inverter for the integration of renewable energy sources, IEEE Trans. on Industry Applications, 54(1), pp. 494-504. [DOI:10.1109/TIA.2017.2753160]
27. Reddy, K. J., Natarajan, S., (2018). Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications- A review, International Journal of Hydrogen Energy, 43(36), pp. 1738-17408. [DOI:10.1016/j.ijhydene.2018.07.076]
28. Revathi, B. S., Mahalingam, P., Gonzalez-Longatt, F., (2019). Interleaved high gain DC-DC converter for integrating solar PV source to DC bus, Solar Energy, 188, pp. 924-934. [DOI:10.1016/j.solener.2019.06.072]
29. Revathi, B. S., Prabhakar, M., (2016). Non-isolated high gain DC-DC con¬ve¬rter topologies for PV applications- A comprehensive review, Renewable and Sustainable Energy Reviews, 66, pp. 920-933. [DOI:10.1016/j.rser.2016.08.057]
30. Salehi, N., Mirtalaei, S. M. M., Mirenayat, S. H., (2018). A high step-up DC-DC soft-switched converter using coupled inductor and switched capacitor, International Journal of Electronics Letters, 6(3), pp. 260-271. [DOI:10.1080/21681724.2017.1357195]
31. Sathyan, S., Suryawanshi, H. M., Ballal, M. S., Shitole, A. B., (2015). Soft-switching dc-dc converter for distributed energy sources with high step-up voltage capability, IEEE Trans. on Industrial Electronics, 62 (11), pp. 7039-7050. [DOI:10.1109/TIE.2015.2448515]
32. Seo, S. W., Ryu, J. H., Kim, Y., Choi, H. H., (2020). Non-isolated high step-up dc/dc converter with coupled inductor and switched capacitor", IEEE Access, 8, pp. 217108-217122. [DOI:10.1109/ACCESS.2020.3041738]
33. Varesi, K., Hosseini, S. H., Sabahi, M., Babaei, E., (2018). Modular non-isolated multi-input high step-up dc-dc converter with reduced normalised voltage stress and component count, IET Power Electronics, 11(6), pp. 1092-11100. [DOI:10.1049/iet-pel.2017.0483]
34. Wai, R., Lin, C., Liaw, J., Chang, Y., (2011). Newly designed ZVS multi-input converter, IEEE Trans. on Industrial Electronics, 58(2), pp. 555-566. Waseem, M., Saeed, L., Khan, M. Y. A., Saleem, J., Majid, A., (April 2018). A multi input multi output bidirectional DC-DC boost converter with backup battery port, Proceeding of the IEEE/ICPESG, Mirpur Azad Kashmir, Pakistan, pp. 1-6.https://doi.org/10.1109/ICPESG.2018.8384526 [DOI:10.1109/TIE.2010.2047834]
35. Ye, Y., Chen, S., Yi, Y., (2021). Switched-capacitor and coupled-inductor-based high step-up converter with improved voltage gain, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), pp. 754-764. [DOI:10.1109/JESTPE.2020.2971525]
36. Youcefa, B. E., Massoum, A., Barkat, S., Wira, P., (2020). Backstepping predictive direct power control of grid-connected photovoltaic system considering power quality, Majlesi Journal of Electrical Engineering, 14(1), pp. 8-23. Zorica, S., Vukšić, M., Betti, T., (2019). Design considerations of the multi-resonant converter as a constant current source for electrolyser utilisation, International Journal of Electrical Power and Energy Systems, 111, pp. 237-247. [DOI:10.1016/j.ijepes.2019.04.019]
37. سلمانی¬کویخی، م.، زعفری، ع.، قاسمی، ع.، (1399). طراحی و کنترل یک فیلتر فعال ترکیبی جدید مبتنی بر تفکیک هارمونیکی جریان بار با هدف کمینه‌سازی مقدار ولتاژ لینک DC در مبدل منبع ولتاژ، نشریه کیفیت و بهره¬وری صنعت برق ایران، 9(3)، صص 11-27.
38. مهدویان، م.، بهزادفر، ن.، (1398). مروری بر سیستم تبدیل انرژی بادی و کاربرد انواع ژنراتور القایی، تحقیقات نوین در برق، 8(4)، صص ۵۵-۶۶. میرطلایی، س.م.م.، محتاج، م.، کرمی، ح. (1394). طراحی و ساخت یک مبدل ترکیبی بوست-سپیک با بهره بالا و کلیدزنی نرم، نشریه روش¬های هوشمند در صنعت برق، 6(24)، صص 27-34.
39. میرطلائی، س.م.م., امانی¬نافچی، ر.، (1398). مبدل DC-DC بسیار افزاینده بوست با سلف کوپل شده و تکنیک دیود-خازن، نشریه روش¬های هوشمند در صنعت برق، 10(39)، صص 3-12.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taheri D, Shahgholian G, Mirtalaei M M. Design of a non-isolated multi-input converter with soft switching and high step-up voltage gain. ieijqp 2021; 10 (2) :75-87
URL: http://ieijqp.ir/article-1-788-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 2 (7-2021) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4645