[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 9، شماره 4 - ( 9-1399 ) ::
جلد 9 شماره 4 صفحات 82-62 برگشت به فهرست نسخه ها
شهر هوشمند به مثابه یک هاب انرژی هوشمند: مروری کتاب شناختی، تحلیلی و ساختاری
مهدی نوذریان1 ، علیرضا فریدونیان* 1
1- محور شبکه های هوشمند انرژی، کریتک، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (3545 مشاهده)
 یکی از اصلی­ ترین چالش­های بشر در قرن حاضر تامین انرژی می­ باشد. رشد جمعیت، افزایش تقاضای انرژی، کمبود سوخت­های فسیلی و نگرانی­ های زیست محیطی، امنیت انرژی را به یک موضوع مهم برای همه کشورهای جهان تبدیل نموده است. شبکه­ های برق سنتی شامل تولید در حجم بالا با راندمان پایین، انتقال در مسیرهای طولانی با تلفات بالا و سپس تغذیه مصرف­کنندگان از طریق یک سیستم پیچیده توزیع، خود با چالش­ های گوناگونی مواجه می­ باشد که صلاحیت این روش از تولید و تبادل انرژی را به­ عنوان سیستم­ امن انرژی آینده دچار تردید می ­نماید. امروزه هاب انرژی به عنوان چهارچوبی که در آن تولید، تبدیل، ذخیره و مصرف حامل­ های مختلف انرژی انجام می ­شود، به ­عنوان چشم­ انداز سیستم انرژی امن آینده مورد توجه بسیاری از محققان واقع شده است. این پژوهش به تحلیل و طبقه ­بندی آخرین دستاوردهای بدیع پژوهشی این حوزه پرداخته است. مرور پژوهش ­ها در حوزه برنامه ­ریزی بلند مدت هاب انرژی، بهینه ­سازی بهره­ برداری از این زیرساخت بدیع پیونددهنده حامل­ های انرژی و مفاهیم هاب انرژی خرد و کلان در این مقاله ارائه شده است. پیش ­از آن و با بررسی سیر پژوهش­ های حوزه هاب انرژی به بررسی کتاب شناختی این حوزه نیز پرداخته می ­شود. همچنین از اهداف اصلی این پژوهش تبیین مفهوم شهر هوشمند متشکل از هاب­ های انرژی هوشمند با استفاده از مرور تحقیقات اخیر پژوهشگران این حوزه می ­باشد.
واژه‌های کلیدی: هاب انرژی، شهر هوشمند، برنامه ریزی و بهره برداری، هاب انرژی خرد و کلان
متن کامل [PDF 2155 kb]   (1080 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1398/11/16 | پذیرش: 1399/6/29 | انتشار: 1399/9/12
فهرست منابع
1. [1] Sovacool, B.K., Valentine, S.V., Bambawale, M.J., Brown, M.A., de Fátima Cardoso, T., Nurbek, S., Suleimenova, G., Li, J., Xu, Y., Jain, A. and Alhajji, A.F., 2012. Exploring propositions about perceptions of energy security: An international survey. Environmental science & policy, 16, pp.44-64. [DOI:10.1016/j.envsci.2011.10.009]
2. [2] Mohammadi, M., Noorollahi, Y., Mohammadi-Ivatloo, B. and Yousefi, H., 2017. Energy hub: from a model to a concept-a review. Renewable and Sustainable Energy Reviews, 80, pp.1512-1527. [DOI:10.1016/j.rser.2017.07.030]
3. [3] مهدی نوذریان، علیرضا فریدونیان " ارزیابی اقتصادی و زیست محیطی هاب انرژی با سیستم توزیع ترکیبی و انرژی خورشــــیدی"، پنجمین کنفرانس بین المللی فن آوری و مدیریت انرژی، تهران، ایران، زمستان 1397.
4. [4] Daneshvar, M., Mohammadi-Ivatloo, B., Asadi, S., Zare, K. and Anvari-Moghaddam, A., 2019, September. Optimal Day-Ahead Scheduling of the Renewable Based Energy Hubs Considering Demand Side Energy Management. In 2019 International Conference on Smart Energy Systems and Technologies (SEST) (pp. 1-6). IEEE. [DOI:10.1109/SEST.2019.8849131]
5. [5] مهدی نوذریان، علیرضا فریدونیان " بهره‌برداری بهینه ریزشبکه‌های شامل ها‌ب-های انرژی به‌هم‌پیوسته با حضور پاسخــگویی بار و منابع تولید پراکنده"، کنفرانس شبـکه های هوشمند انرژی 98، تهران، ایران، آذرماه 1398.
6. [6] Geidl, M., Koeppel, G., Favre-Perrod, P., Klockl, B., Andersson, G. and Frohlich, K., 2006. Energy hubs for the future. IEEE power and energy magazine, 5(1), pp.24-30. [DOI:10.1109/MPAE.2007.264850]
7. [7] Geidl, M., Koeppel, G., Favre-Perrod, P., Klöckl, B., Andersson, G. and Fröhlich, K., 2007, March. The Energy Hub-A powerful concept for future energy systems. In Third annual Carnegie mellon conference on the electricity industry (Vol. 13, p. 14).
8. [8] Favre-Perrod, P., 2005, July. A vision of future energy networks. In 2005 IEEE power engineering society inaugural conference and exposition in Africa (pp. 13-17). IEEE.
9. [9] Sadeghi, H., Rashidinejad, M., Moeini-Aghtaie, M. and Abdollahi, A., 2019. The energy hub: An extensive survey on the state-of-the-art. Applied Thermal Engineering, p.114071. [DOI:10.1016/j.applthermaleng.2019.114071]
10. [10] Khalilpour, K.R. ed., 2018. Polygeneration with Polystorage: For Chemical and Energy Hubs. Academic Press.
11. [11] Shi, Y., Liu, M. and Fang, F., 2017. Combined Cooling, Heating, and Power Systems: Modeling, Optimization, and Operation. John Wiley & Sons. [DOI:10.1002/9781119283362]
12. [12] La Scala, M., Bruno, S., Nucci, C.A., Lamonaca, S. and Stecchi, U. eds., 2017. From smart grids to smart cities: new challenges in optimizing energy grids. John Wiley & Sons. [DOI:10.1002/9781119116080]
13. [13] Mahmud, A., 2014. Large scale renewable power generation. [14] Rajakaruna, S., Shahnia, F. and Ghosh, A., 2016. Plug in electric vehicles in smart grids. Springer Verlag, Singapor. [DOI:10.1007/978-981-287-317-0]
14. [15] Soroudi, A., 2017. Power system optimization modeling in GAMS (Vol. 78). Switzerland: Springer. [DOI:10.1007/978-3-319-62350-4]
15. [16] Mohammadi-Ivatloo, B. and Jabari, F. eds., 2018. Operation, planning, and analysis of energy storage systems in smart energy hubs. Springer. [DOI:10.1007/978-3-319-75097-2]
16. [17] Zobaa, A.F., Aleem, S.H.A. and Abdelaziz, A.Y. eds., 2018. Classical and Recent Aspects of Power System Optimization. Academic Press.
17. [18] Pazouki, S. and Haghifam, M.R., 2016. Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. International Journal of Electrical Power & Energy Systems, 80, pp.219-239. [DOI:10.1016/j.ijepes.2016.01.044]
18. [19] Wang, Y., Zhang, N., Zhuo, Z., Kang, C. and Kirschen, D., 2018. Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied energy, 210, pp.1141-1150. [DOI:10.1016/j.apenergy.2017.08.114]
19. [20] Yang, F., Yuan, X., Bai, H., Yin, S. and Liu, H., 2018, September. Collaborative Planning of Integrated Natural Gas and Power Supply System Considering P2G Technique. In 2018 China International Conference on Electricity Distribution (CICED) (pp. 2216-2220). IEEE. [DOI:10.1109/CICED.2018.8592269]
20. [21] Huang, W., Zhang, N., Yang, J., Wang, Y. and Kang, C., 2017. Optimal configuration planning of multi-energy systems considering distributed renewable energy. IEEE Transactions on Smart Grid, 10(2), pp.1452-1464. [DOI:10.1109/TSG.2017.2767860]
21. [22] Ghasemi, H., Aghaei, J., Gharehpetian, G.B. and Haeri, H., 2019, September. Effect of Smart Multiple Hub Planning on Distribution Networks Integrated Expansion. In 2019 International Conference on Smart Energy Systems and Technologies (SEST) (pp. 1-6). IEEE. [DOI:10.1109/SEST.2019.8849104]
22. [23] Wang, J., Hu, Z. and Xie, S., 2019. Expansion planning model of multi-energy system with the integration of active distribution network. Applied Energy, 253, p.113517. [DOI:10.1016/j.apenergy.2019.113517]
23. [24] Zhu, X., Zeng, B., Dong, H. and Liu, J., 2019. An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ramping products. Energy, p.116821. [DOI:10.1016/j.energy.2019.116821]
24. [25] Rakipour, D. and Barati, H., 2019. Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response. Energy, 173, pp.384-399. [DOI:10.1016/j.energy.2019.02.021]
25. [26] Jamalzadeh, F., Mirzahosseini, A.H., Faghihi, F. and Panahi, M., 2019. Optimal operation of energy hub system using hybrid stochastic-interval optimization approach. Sustainable Cities and Society, p.101998. [DOI:10.1016/j.scs.2019.101998]
26. [27] Jadidbonab, M., Dolatabadi, A., Mohammadi-Ivatloo, B., Abapour, M. and Asadi, S., 2019. Risk-constrained energy management of PV integrated smart energy hub in the presence of demand response program and compressed air energy storage. IET Renewable Power Generation, 13(6), pp.998-1008. [DOI:10.1049/iet-rpg.2018.6018]
27. [28] Daneshvar, M., Mohammadi-Ivatloo, B., Asadi, S., Zare, K. and Anvari-Moghaddam, A., 2019, September. Optimal Day-Ahead Scheduling of the Renewable Based Energy Hubs Considering Demand Side Energy Management. In 2019 International Conference on Smart Energy Systems and Technologies (SEST) (pp. 1-6). IEEE. [DOI:10.1109/SEST.2019.8849131]
28. [29] Chamandoust, H., Derakhshan, G., Hakimi, S.M. and Bahramara, S., 2019. Tri-objective optimal scheduling of smart energy hub system with schedulable loads. Journal of Cleaner Production, 236, p.117584. [DOI:10.1016/j.jclepro.2019.07.059]
29. [30] Cao, Y., Wang, Q., Du, J., Nojavan, S., Jermsittiparsert, K. and Ghadimi, N., 2019. Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: An epsilon constraint and fuzzy methods. Sustainable Energy, Grids and Networks, 20, p.100274. [DOI:10.1016/j.segan.2019.100274]
30. [31] Eladl, A.A., El-Afifi, M.I., Saeed, M.A. and El-Saadawi, M.M., 2020. Optimal operation of energy hubs integrated with renewable energy sources and storage devices considering CO2 emissions. International Journal of Electrical Power & Energy Systems, 117, p.105719. [DOI:10.1016/j.ijepes.2019.105719]
31. [32] Lu, X., Liu, Z., Ma, L., Wang, L., Zhou, K. and Feng, N., 2019. A robust optimization approach for optimal load dispatch of community energy hub. Applied Energy, p.114195. [DOI:10.1016/j.apenergy.2019.114195]
32. [33] Kamyab, F. and Bahrami, S., 2016. Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy, 106, pp.343-355. [DOI:10.1016/j.energy.2016.03.074]
33. [34] Li, Y., Li, Z., Wen, F. and Shahidehpour, M., 2018. Privacy-Preserving Optimal Dispatch for an Integrated Power Distribution and Natural Gas System in Networked Energy Hubs. IEEE Transactions on Sustainable Energy, 10(4), pp.2028-2038. [DOI:10.1109/TSTE.2018.2877586]
34. [35] Ma, R., Deng, J., Li, H. and Qin, J., 2017, November. Improved particle swarm optimization algorithm to multi-objective optimization energy hub model with P2G and energy storage. In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1-6). IEEE. [DOI:10.1109/EI2.2017.8245641]
35. [36] Shahmohammadi, A., Moradi-Dalvand, M., Ghasemi, H. and Ghazizadeh, M.S., 2014. Optimal design of multicarrier energy systems considering reliability constraints. IEEE Transactions on Power Delivery, 30(2), pp.878-886. [DOI:10.1109/TPWRD.2014.2365491]
36. [37] Cheng, Y., Zhang, N., Zhang, B., Kang, C., Xi, W. and Feng, M., 2019. Low-Carbon Operation of Multiple Energy Systems Based on Energy-Carbon Integrated Prices. IEEE Transactions on Smart Grid. [DOI:10.1109/TSG.2019.2935736]
37. [38] Moghaddas-Tafreshi, S.M., Jafari, M., Mohseni, S. and Kelly, S., 2019. Optimal operation of an energy hub considering the uncertainty associated with the power consumption of plug-in hybrid electric vehicles using information gap decision theory. International Journal of Electrical Power & Energy Systems, 112, pp.92-108. [DOI:10.1016/j.ijepes.2019.04.040]
38. [39] Pazouki, S. and Haghifam, M.R., 2014, December. Impact of energy storage technologies on multi carrier energy networks. In 2014 Smart Grid Conference (SGC) (pp. 1-6). IEEE. [DOI:10.1109/SGC.2014.7090854]
39. [40] Javadi, M.S., Branch, S., Anvari-Moghaddam, A., Guerrero, J.M., Nezhad, A.E., Lotfi, M. and Catalão, J.P., 2019. Optimal Operation of an Energy Hub in the Presence of Uncertainties. In 19th IEEE International Conference on Environment and Electrical Engineering (EEEIC 2019) (pp. 1-4). IEEE Press. [DOI:10.1109/EEEIC.2019.8783452]
40. [41] Zhao, P., Gu, C., Huo, D., Shen, Y. and Hernando-Gil, I., 2019. Two-Stage Distributionally Robust Optimization for Energy Hub Systems. IEEE Transactions on Industrial Informatics. [DOI:10.1109/TII.2019.2938444]
41. [42] Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Hosseinzadeh, M., Yousefi, H. and Khorasani, S.T., 2018. Optimal management of energy hubs and smart energy hubs-a review. Renewable and Sustainable Energy Reviews, 89, pp.33-50 [DOI:10.1016/j.rser.2018.02.035]
42. [43] Pazouki, S., Mohsenzadeh, A., Ardalan, S. and Haghifam, M.R., 2016. Optimal place, size, and operation of combined heat and power in multi carrier energy networks considering network reliability, power loss, and voltage profile. IET Generation, Transmission & Distribution, 10(7), pp.1615-1621. [DOI:10.1049/iet-gtd.2015.0888]
43. [44] Homayouni, F., Roshandel, R. and Hamidi, A.A., 2017. Sizing and performance analysis of standalone hybrid photovoltaic/battery/hydrogen storage technology power generation systems based on the energy hub concept. International journal of green energy, 14(2), pp.121-134. [DOI:10.1080/15435075.2016.1233423]
44. [45] Senemar, S., Rastegar, M., Dabbaghjamanesh, M. and Hatziargyriou, N.D., 2019. Dynamic Structural Sizing of Residential Energy Hubs. IEEE Transactions on Sustainable Energy. [DOI:10.1109/TSTE.2019.2921110]
45. [46] Senemar, S., Seifi, A.R., Rastegar, M. and Parvania, M., 2019. Probabilistic optimal dynamic planning of onsite solar generation for residential energy hubs. IEEE Systems Journal. [DOI:10.1109/JSYST.2019.2901844]
46. [47] Setlhaolo, D., Sichilalu, S. and Zhang, J., 2017. Residential load management in an energy hub with heat pump water heater. Applied energy, 208, pp.551-560. [DOI:10.1016/j.apenergy.2017.09.099]
47. [48] Hanafizadeh, P., Eshraghi, J., Ahmadi, P. and Sattari, A., 2016. Evaluation and sizing of a CCHP system for a commercial and office [1] buildings. Journal of Building Engineering, 5, pp.67-78. [DOI:10.1016/j.jobe.2015.11.003]
48. [49] Syed, F., Fowler, M., Wan, D. and Maniyali, Y., 2010. An energy demand model for a fleet of plug-in fuel cell vehicles and commercial building interfaced with a clean energy hub. International Journal of Hydrogen Energy, 35(10), pp.5154-5163. [DOI:10.1016/j.ijhydene.2009.08.089]
49. [50] Paudyal, S., Cañizares, C.A. and Bhattacharya, K., 2014. Optimal operation of industrial energy hubs in smart grids. IEEE Transactions on Smart Grid, 6(2), pp.684-694. [DOI:10.1109/TSG.2014.2373271]
50. [51] Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M. and Ghadimi, N., 2018. Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Applied Thermal Engineering, 137, pp.395-405. [DOI:10.1016/j.applthermaleng.2018.04.008]
51. [52] Shamshirband, S., Khoshnevisan, B., Yousefi, M., Bolandnazar, E., Anuar, N.B., Wahab, A.W.A. and Khan, S.U.R., 2015. A multi-objective evolutionary algorithm for energy management of agricultural systems-a case study in Iran. Renewable and Sustainable Energy Reviews, 44, pp.457-465. [DOI:10.1016/j.rser.2014.12.038]
52. [53] Blancard, S. and Martin, E., 2014. Energy efficiency measurement in agriculture with imprecise energy content information. Energy Policy, 66, pp.198-208. [DOI:10.1016/j.enpol.2013.10.071]
53. [54] Marquant, J.F., Evins, R. and Carmeliet, J., 2015. Reducing computation time with a rolling horizon approach applied to a MILP formulation of multiple urban energy hub system. Procedia Computer Science, 51, pp.2137-2146. [DOI:10.1016/j.procs.2015.05.486]
54. [55] Gholinejad, H.R., Loni, A., Adabi, J. and Marzband, M., 2020. A hierarchical energy management system for multiple home energy hubs in neighborhood grids. Journal of Building Engineering, 28, p.101028. [DOI:10.1016/j.jobe.2019.101028]
55. [56] Bostan, A., Nazar, M.S., Shafie-khah, M. and Catalão, J.P., 2019. Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs. Energy, p.116349. [DOI:10.1016/j.energy.2019.116349]
56. [57] Luo, X., Liu, Y., Liu, J. and Liu, X., 2020. Energy scheduling for a three-level integrated energy system based on energy hub models: A hierarchical Stackelberg game approach. Sustainable Cities and Society, 52, p.101814. [DOI:10.1016/j.scs.2019.101814]
57. [58] Liu, T., Zhang, D. and Wu, T., 2020. Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. Energy conversion and management, Volume 205, 1 February 2020, 112410. [DOI:10.1016/j.enconman.2019.112410]
58. [59] Huo, D., Le Blond, S., Gu, C., Wei, W. and Yu, D., 2018. Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. International Journal of Electrical Power & Energy Systems, 95, pp.36-46. [DOI:10.1016/j.ijepes.2017.08.004]
59. [60] Zhang, X., Che, L., Shahidehpour, M., Alabdulwahab, A.S. and Abusorrah, A., 2015. Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs. IEEE Transactions on Smart Grid, 8(4), pp.1658-1667. [DOI:10.1109/TSG.2015.2498166]
60. [61] Ghorab, M., 2019. Energy hubs optimization for smart energy network system to minimize economic and environmental impact at Canadian community. Applied Thermal Engineering, 151, pp.214-230. [DOI:10.1016/j.applthermaleng.2019.01.107]
61. [62] Sobhani, S.O., Sheykhha, S., Azimi, M.R. and Madlener, R., 2019. Two-Level Distributed Demand-Side Management Using the Smart Energy Hub Concept. Energy Procedia, 158, pp.3052-3063. [DOI:10.1016/j.egypro.2019.01.990]
62. [63] Jadidbonab, M., Babaei, E. and Mohammadi-ivatloo, B., 2019. CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage. Energy, 174, pp.1238-1250. [DOI:10.1016/j.energy.2019.02.048]
63. [64] Liu, T., Zhang, D., Dai, H. and Wu, T., 2019. Intelligent Modeling and Optimization for Smart Energy Hub. IEEE Transactions on Industrial Electronics. [DOI:10.1109/TIE.2019.2903766]
64. [65] Jadidbonab, M., Dolatabadi, A., Mohammadi-Ivatloo, B., Abapour, M. and Asadi, S., 2019. Risk-constrained energy management of PV integrated smart energy hub in the presence of demand response program and compressed air energy storage. IET Renewable Power Generation, 13(6), pp.998-1008. [DOI:10.1049/iet-rpg.2018.6018]
65. [66] Majidi, M. and Zare, K., 2018. Integration of smart energy hubs in distribution networks under uncertainties and demand response concept. IEEE Transactions on Power Systems, 34(1), pp.566-574. [DOI:10.1109/TPWRS.2018.2867648]
66. [67] Xiao, J., Zhao, T., Hai, K.L. and Wang, P., 2017, November. Smart energy hub-Modularized hybrid AC/DC microgrid: System design and deployment. In 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1-6). IEEE. [DOI:10.1109/EI2.2017.8245453]
67. [68] Zhou, L., Liu, N. and Zhang, Y., 2018, October. Energy Management for Smart Energy Hub Considering Gas Dispatch Factor and Demand Response. In 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1-6). IEEE. [DOI:10.1109/EI2.2018.8582162]
68. [69] Ma, T., Wu, J., Hao, L., Lee, W.J., Yan, H. and Li, D., 2018. The optimal structure planning and energy management strategies of smart multi energy systems. Energy, 160, pp.122-141. [DOI:10.1016/j.energy.2018.06.198]
69. [70] سعید باقری، حسین طالبی و علیرضا فریدونیان "بهره‌برداری تاب‌آور، رفاهی و اقتصادی نانوشبکه هوشمند" مجله کنترل، جلد 12، شماره 3، پاییز 1397.
70. [71] Huo, D., Gu, C., Ma, K., Wei, W., Xiang, Y. and Le Blond, S., 2018. Chance-constrained optimization for multienergy hub systems in a smart city. IEEE Transactions on Industrial Electronics, 66(2), pp.1402-1412. [DOI:10.1109/TIE.2018.2863197]
71. [72] Van Beuzekom, I., Mazairac, L.A.J., Gibescu, M. and Slootweg, J.G., 2016, April. Optimal design and operation of an integrated multi-energy system for smart cities. In 2016 IEEE International Energy Conference (ENERGYCON) (pp. 1-7). IEEE. [DOI:10.1109/ENERGYCON.2016.7514030]
72. [73] Almassalkhi, M.R. and Towle, A., 2016, June. Enabling city-scale multi-energy optimal dispatch with energy hubs. In 2016 Power Systems Computation Conference (PSCC) (pp. 1-7). IEEE. [DOI:10.1109/PSCC.2016.7540981]
73. [74] Shao, C., Wang, X., Shahidehpour, M., Wang, X. and Wang, B., 2016. An MILP-based optimal power flow in multicarrier energy systems. IEEE Transactions on Sustainable Energy, 8(1), pp.239-248. [DOI:10.1109/TSTE.2016.2595486]
74. [75] Bahrami, S. and Sheikhi, A., 2015. From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Transactions on Smart Grid, 7(2), pp.650-658. [DOI:10.1109/TSG.2015.2464374]
75. [76] Brenna, M., Falvo, M.C., Foiadelli, F., Martirano, L., Massaro, F., Poli, D. and Vaccaro, A., 2012, September. Challenges in energy systems for the smart-cities of the future. In 2012 IEEE International Energy Conference and Exhibition (ENERGYCON) (pp. 755-762). IEEE. [DOI:10.1109/EnergyCon.2012.6348251]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nozarian M, Fereidunian A. Smart City as an Smart Energy Hub: A Bibliographic, Analytic and Structural Review. ieijqp 2020; 9 (4) :62-82
URL: http://ieijqp.ir/article-1-717-fa.html

نوذریان مهدی، فریدونیان علیرضا. شهر هوشمند به مثابه یک هاب انرژی هوشمند: مروری کتاب شناختی، تحلیلی و ساختاری. نشریه کیفیت و بهره وری صنعت برق ایران. 1399; 9 (4) :62-82

URL: http://ieijqp.ir/article-1-717-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 4 - ( 9-1399 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645