[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 9، شماره 3 - ( 7-1399 ) ::
جلد 9 شماره 3 صفحات 10-1 برگشت به فهرست نسخه ها
کنترل ولتاژ توزیع شده در شبکه‌های توزیع در حضور گسترده منابع فتوولتائیک با استفاده از روش برنامه‌ریزی تصادفی
هادی یوسفی1، سیداصغر غلامیان2، علیرضا ذکریازاده* 3
1- دانشکده مهندسی برق و کامپیوتر،دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
2- دانشکده مهندسی برق و کامپیوتر،دانشگاه صنعتی نوشیروانی بابلٍ، بابل، ایران
3- دانشکده مهندسی برق و کامپیوتر، دانشگاه علم و فناوری مازندران، بهشهر، ایران
چکیده:   (3066 مشاهده)
نفوذ بالای واحدهای فتوولتائیک در سطح شبکه توزیع ممکن است منجر به چالش افزایش ولتاژ همزمان با ساعات حداکثر تولید این منابع شود. لذا نیاز به اجرای برنامه‌های کنترل ولتاژ  با لحاظ کردن ویژگی تاثیر ناحیه‌ای توان راکتیو است. در این مقاله مدلی برای مدیریت توان راکتیو در شبکه توزیع در حضور منابع تولید پراکنده فتوولتائیک ارائه شده است که از قابلیت اینورتر واحدهای فتوولتائیک جهت تامین توان راکتیو مورد نیاز استفاده می‌کند. در روش پیشنهادی، با توجه به تاثیر ناحیه‌ای توان راکتیو، ابتدا شبکه توزیع با استفاده از یک روش خوشه‌بندی به بخش‌های کوچکتری تقسیم می‌شود. سپس، از الگوریتم توزیع شده مسیر متناوب ضرایب (ADMM) برای برنامه مدیریت ولتاژ و توان راکتیو به صورت توزیع شده در بخش‌های مختلف استفاده می‌شود. همچنین، عدم قطعیت تولید منابع فتوولتائیک با استفاده از برنامه‌ریزی تصادفی مدلسازی شده است. روش پیشنهادی بر روی شبکه توزیع واقعی که مجهز به مولدهای تولیدپراکنده است مورد آزمایش قرار گرفت. نتایج نشان می‌دهد استفاده از روش کنترل ولتاژ پیشنهادی موجب استفاده حداقل از ظرفیت توان راکتیو و سرعت بالای انجام محاسبات می‌شود.
واژه‌های کلیدی: شبکه توزیع، منابع فتوولتائیک، کنترل ولتاژ، روش خوشه‌بندی، روش توزیع شده.
متن کامل [PDF 1490 kb]   (1102 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1398/4/7 | پذیرش: 1399/4/15 | انتشار: 1399/6/10
فهرست منابع
1. [1] S. Golshannavaz "Cooperation of electric vehicle and energy storage in reactive power compensation: An optimal home energy management system considering PV presence." Sustainable cities and society 39 (2018): 317-325. [DOI:10.1016/j.scs.2018.02.018]
2. [2] S. Moradian, O. Homaee, S. Jadid, P. Siano. "Optimal placement of switched capacitors equipped with stand‐alone voltage control systems in radial distribution networks." International Transactions on Electrical Energy Systems 29, no. 3 (2019): e2753. [DOI:10.1002/etep.2753]
3. [3] S. Jashfar, S. Esmaeili. "Volt/var/THD control in distribution networks considering reactive power capability of solar energy conversion." International journal of electrical power & energy systems 60 (2014): 221-233. [DOI:10.1016/j.ijepes.2014.02.038]
4. [4] A. Yazdaninejadi, A. Hamidi, S. Golshannavaz, F. Aminifar, S. Teimourzadeh. "Impact of inverter-based DERs integration on protection, control, operation, and planning of electrical distribution grids." The Electricity Journal 32, no. 6 (2019): 43-56. [DOI:10.1016/j.tej.2019.05.016]
5. [5] Akagi, Satoru, Ryo Takahashi, Akihisa Kaneko, Masakazu Ito, Jun Yoshinaga, Yasuhiro Hayashi, Hiroshi Asano, and Hiromi Konda. "Upgrading Voltage Control Method Based on Photovoltaic Penetration Rate." IEEE Transactions on Smart Grid 9, no. 5 (2018): 3994-4003. [DOI:10.1109/TSG.2016.2645706]
6. [6] Wang, Licheng, Ruifeng Yan, and Tapan Kumar Saha. "Voltage management for large scale PV integration into weak distribution systems." IEEE Transactions on Smart Grid 9, no. 5 (2018): 4128-4139. [DOI:10.1109/TSG.2017.2651030]
7. [7] H. Pezeshki, A. Arefi, G. Ledwich, P. Wolfs. "Probabilistic voltage management using OLTC and dSTATCOM in distribution networks." IEEE Transactions on Power Delivery 33, no. 2 (2018): 570-580. [DOI:10.1109/TPWRD.2017.2718511]
8. [8] P. Li, H. Ji, H. Yu, J. Zhao, C. Wang, G. Song, J. Wu. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks." Applied Energy 241 (2019): 613-624. [DOI:10.1016/j.apenergy.2019.03.031]
9. [9] M. Monadi, H. Hooshyar, L. Vanfretti, F. Mahmood, J. I. Candela, P. Rodriguez. "Measurement-based Network Clustering for Active Distribution Systems." IEEE Transactions on Smart Grid (2019). [DOI:10.1109/TSG.2019.2910510]
10. [10] M. Nayeripour, H. Fallahzadeh-Abarghouei, E. Waffenschmidt, S. Hasanvand. "Coordinated online voltage management of distributed generation using network partitioning." Electric Power Systems Research 141 (2016): 202-209. [DOI:10.1016/j.epsr.2016.07.024]
11. [11] B. Zhao, Z. Xu, C. Xu, C. Wang, F. Lin. "Network Partition-Based Zonal Voltage Control for Distribution Networks with Distributed PV Systems." IEEE Transactions on Smart Grid 9, no. 5 (2018): 4087-4098. [DOI:10.1109/TSG.2017.2648779]
12. [12] J. Ding, Q. Zhang, S. Hu, Q. Wang, Q. Ye. "Clusters partition and zonal voltage regulation for distribution networks with high penetration of PVs." IET Generation, Transmission & Distribution 12, no. 22 (2018): 6041-6051. [DOI:10.1049/iet-gtd.2018.6255]
13. [13] P. N. Biskas, A. G. Bakirtzis, N. I. Macheras, and N. K. Pasialis, "A decentralized implementation of DC optimal power flow on a network of computers," IEEE Trans. Power Syst., vol. 20, no. 1, pp. 25-33, Feb. 2005. [DOI:10.1109/TPWRS.2004.831283]
14. [14] A. G. Bakirtzis and P. N. Biskas, "A decentralized solution to the DC-OPF of interconnected power systems," IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1007-1013, Aug. 2003. [DOI:10.1109/TPWRS.2003.814853]
15. [15] M. Anjos, A. Lodi, M. Tanneau. "A decentralized framework for the optimal coordination of distributed energy resources." IEEE Transactions on Power Systems 34, no. 1 (2018): 349-359. [DOI:10.1109/TPWRS.2018.2867476]
16. [16] Brooks, J., Trevizan, R.D., Barooah, P. and Bretas, A.S., 2019. Analysis and evaluation of a distributed optimal load coordination algorithm for frequency control. Electric Power Systems Research, 167, pp.86-93. [DOI:10.1016/j.epsr.2018.10.021]
17. [17] Duan, Jie, and Mo-Yuen Chow. "A Novel Data Integrity Attack on Consensus-Based Distributed Energy Management Algorithm Using Local Information." IEEE Transactions on Industrial Informatics 15, no. 3 (2018): 1544-1553. [DOI:10.1109/TII.2018.2851248]
18. [18] S. G. M. Rokni, M. Radmehr, A. Zakariazadeh. "Optimum energy resource scheduling in a microgrid using a distributed algorithm framework." Sustainable cities and society 37 (2018): 222-231. [DOI:10.1016/j.scs.2017.11.016]
19. [19] Lai, Kexing, and Mahesh S. Illindala. "A distributed energy management strategy for resilient shipboard power system." Applied Energy 228 (2018): 821-832. [DOI:10.1016/j.apenergy.2018.06.111]
20. [20] P. Sulc, S. Backhaus, and M. Chertkov, "Optimal distributed control of reactive power via the alternating direction method of multipliers," IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 968-977, Dec. 2014. [DOI:10.1109/TEC.2014.2363196]
21. [21] Nguyen HK, Khodaei A, Han Z. Incentive mechanism design for integrated microgrids in peak ramp minimization problem. IEEE Trans Smart Grid 2017;3053. [DOI:10.1109/SmartGridComm.2016.7778757]
22. [22] T. Erseghe, "Distributed optimal power flow using ADMM," IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2370-2380, Sep. 2014. [DOI:10.1109/TPWRS.2014.2306495]
23. [23] V. Bhattacharjee, I. Khan. "A non-linear convex cost model for economic dispatch in microgrids." Applied energy 222 (2018): 637-648. [DOI:10.1016/j.apenergy.2018.04.001]
24. [24] M. Chamana, B. H. Chowdhury, F. Jahanbakhsh. "Distributed control of voltage regulating devices in the presence of high PV penetration to mitigate ramp-rate issues." IEEE Transactions on Smart Grid 9, no. 2 (2018): 1086-1095. [DOI:10.1109/TSG.2016.2576405]
25. [25] R. A. Jabr. "Linear decision rules for control of reactive power by distributed photovoltaic generators." IEEE Transactions on Power Systems 33, no. 2 (2018): 2165-2174. [DOI:10.1109/TPWRS.2017.2734694]
26. [26] R. A. Jabr, "Robust Volt/VAr Control with Photovoltaics." IEEE Transactions on Power Systems (2019). [DOI:10.1109/TPWRS.2018.2890767]
27. [27] M. Farivar and S. H. Low, "Branch flow model: Relaxations and convexification part I," IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 2554-2564, 2013. [DOI:10.1109/TPWRS.2013.2255317]
28. [28] H. Zhu and H. J. Liu, "Fast local voltage control under limited reactive power: Optimality and stability analysis," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3794-3803, 2016. [DOI:10.1109/TPWRS.2015.2504419]
29. [29] E. Dall'Anese, S. V. Dhople, and G. B. Giannakis, "Optimal dispatch of photovoltaic inverters in residential distribution systems," IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487-497, 2014. [DOI:10.1109/TSTE.2013.2292828]
30. [30] M. Girvan and M. E. J. Newman, "Community structure in social and biological networks," Proc. Natl. Acad. Sci., vol.99, no.12, pp. 7821-7826, 2002. [DOI:10.1073/pnas.122653799]
31. [31] F. Youcef , A. Mefti, A. Adane, M. Y. Bouroubi. Statistical analysis of solar measurements in Algeria using beta distributions. Renew Energy 2002;26: 47-67. [DOI:10.1016/S0960-1481(01)00100-8]
32. [32] R. Chedid, H. Akiki, S. Rahman. A decision support technique for the design of hybrid solar-wind power systems. IEEE Trans Energy Convers 1995; 13:76-83. [33] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, Jan. 2011. https://doi.org/10.1561/2200000016 [DOI:10.1109/60.658207]
33. [34] Y. Atwa, E. F. El-Saadany. "Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems." IET Renewable Power Generation 5, no. 1 (2011): 79-88. [DOI:10.1049/iet-rpg.2009.0011]
34. [35] J. W. Smith, R. Dugan, and W. Sunderman, "Distribution modeling and analysis of high penetration PV," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, United states, Jul. 2011, pp.1-7. [DOI:10.1109/PES.2011.6039765]
35. [36] H. Konno. "Maximization of a convex quadratic function under linear constraints." Mathematical programming 11, no. 1 (1976): 117-127. [DOI:10.1007/BF01580380]
36. [37] E. Ghadimi, A. Teixeira, I. Shames, and M. Johanson, "Optimal parameter selection for the alternating direction method of multipliers (ADMM): Quadratic problems," IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 644-658, Mar. 2015. [DOI:10.1109/TAC.2014.2354892]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zakariazadeh A. Managing Photovoltaic Generation Effect On Voltage Profile Using Distributed Algorithm. ieijqp 2020; 9 (3) :1-10
URL: http://ieijqp.ir/article-1-645-fa.html

یوسفی هادی، غلامیان سیداصغر، ذکریازاده علیرضا. کنترل ولتاژ توزیع شده در شبکه‌های توزیع در حضور گسترده منابع فتوولتائیک با استفاده از روش برنامه‌ریزی تصادفی. نشریه کیفیت و بهره وری صنعت برق ایران. 1399; 9 (3) :1-10

URL: http://ieijqp.ir/article-1-645-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 3 - ( 7-1399 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645