[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
صاحب امتیاز::
درباره انجمن::
تماس با ما::
تسهیلات پایگاه::
cope::
metrics::
تعارض منافع::
::
پایگاه های نمایه کننده
..
DOI
کلیک کنید
..
IEEE
..
DOR

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
:: دوره 14، شماره 2 - ( 5-1404 ) ::
جلد 14 شماره 2 صفحات 0-0 برگشت به فهرست نسخه ها
آثار سایه بر عملکرد پنل خورشیدی فتوولتائیک و روش‌های مقابله با آن
شایان بزرگپور1 ، اصلان غلامی*1
1- دانشگاه شهید بهشتی
چکیده:   (84 مشاهده)

پنل‌های فتوولتائیک، به‌عنوان یکی از رکن‌های اصلی تولید انرژی‌های تجدیدپذیر، نقشی محوری در گذار اصلی به سمت استفاده از منابع پاک انرژی ایفا می‌کنند. با این حال، آثار مخرب سایه‌اندازی به‌عنوان یکی از چالش‌های اجتناب‌ناپذیر محیطی می‌تواند کارایی این سامانه‌ها را به‌طور چشمگیری کاهش دهد. این مقاله مروری با هدف ارائه‌ی تحلیل جامع از تأثیر انواع سایه‌اندازی بر عملکرد پنل‌های فتوولتائیک و معرفی راهکارهای نوین کاهش آثار آن تدوین شده است. ابتدا انواع سایه شامل سایه‌های افقی، عمودی، مورب و پراکنده و آثار مستقیم آن‌ها بر کاهش بهره‌وری، ایجاد نقطه داغ و افت ضریب پرشدگی بررسی شده است. در ادامه، سه رویکرد اصلی مقابله با آثار سایه‌اندازی شامل استفاده از تجهیزات الکتریکی نظیر دیود بایپس، اپتیمایزرها و میکرواینورترها، بهینه‌سازی ساختار سلول‌ها از طریق طراحی‌هایی مانند سلول‌های نیمه و شینگل، و استفاده از پیکربندی‌های پیشرفته آرایه‌های خورشیدی نظیر پل کامل متقاطع و سودوکو مرور شده است. بررسی‌های انجام‌شده نشان می‌دهد که پیکربندی‌های نوآورانه مانند سودوکو و طراحی‌های مبتنی بر جا‌به‌جایی فیزیکی می‌توانند در کاهش تلفات توان و افزایش کارایی سیستم‌ها تحت شرایط سایه‌اندازی، عملکرد بهتری نسبت به روش‌های سنتی ارائه دهند. برخی از این روش‌های بازپیکربندی مانند توانسته میانگین افزایش توان خروجی را تا 22.46 درصد در مقایسه با روش‌های متداول، به‌ویژه روش پل کامل متقاطع، ارائه دهد و گاهی بازپیکربندی‌هایی مانند سودوکو، تلفات توان را در برخی مدل‌های سایه تا 53.68 درصد کاهش داده است. در نهایت، مسیرهای تحقیقاتی آینده شامل توسعه مدل‌های پیش‌بینی هوشمند سایه، تحلیل ترکیبی آثار سایه و آلودگی، و استفاده از فناوری‌های جدید در پنل‌های انعطاف‌پذیر معرفی شده‌اند. این مقاله مروری با هدف فراهم‌سازی دیدگاهی جامع برای ارتقای بهره‌وری سامانه‌های فتوولتائیک و کاهش اثر سایه تدوین شده است.
 

واژه‌های کلیدی: پنل‌ فتوولتائیک، سایه‌اندازی، دیود بایپس، پیکربندی سلول‌ها، انرژی تجدیدپذیر.
     
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1403/11/11 | پذیرش: 1404/5/11 | انتشار: 1404/5/19
فهرست منابع
1. [1] Y. Gholami, A. Gholami, M. Ameri, and M. Zandi, Investigation of Applied Methods of Using Passive Energy In Iranian Traditional Urban Design, Case Study of Kashan, in 4th International Conference on Advances In Mechanical Engineering: ICAME 2018, 2018, pp. 3-12.
2. [2] M. Afkar, A. Gholami, R. Gavagsaz-Ghoachani, M. Phattanasak, and S. Pierfederici, Sustainable Education for Sustainable Future: Art of Storytelling for Enhancing Creativity, Knowledge Retention on the Acme of Successful Education, IEEE Access, Vol. 12, pp. 101782-101796, 2024. [DOI:10.1109/ACCESS.2024.3432030]
3. [3] A. Minoofar et al., Renewable energy system opportunities: A sustainable solution toward cleaner production and reducing carbon footprint of large-scale dairy farms, Energy Conversion and Management, Vol. 293, p. 117554, 2023. [DOI:10.1016/j.enconman.2023.117554]
4. [4] H. A. Kazem, A. H. A. Al-Waeli, M. T. Chaichan, K. Sopian, A. S. Al Busaidi, and A. Gholami, Photovoltaic-thermal systems applications as dryer for agriculture sector: A review, Case Studies in Thermal Engineering, Vol. 47, p. 103047, 2023. [DOI:10.1016/j.csite.2023.103047]
5. [5] M. Ameri, A. Minoofar, A. Gholami, A. Gholami, S. Eslami, and M. Zandi, Energy Efficiency and Solar Energy Implementation Opportunities for Dairy Farms, in 11th Global Conference on Global Warming (GCGW-2023), 2023, pp. 1-4. [DOI:10.2139/ssrn.4662128]
6. [6] A. A. Dehghan and A. Barzegar, Thermal performance behavior of a domestic hot water solar storage tank during consumption operation, Energy Conversion and Management, Vol. 52, No. 1, pp. 468-476, 2011. [DOI:10.1016/j.enconman.2010.06.075]
7. [7] S. Eslami, A. Gholami, H. Akhbari, M. Zandi, and Y. Noorollahi, Solar-based multi-generation hybrid energy system; simulation and experimental study, International Journal of Ambient Energy, Vol. 43, No. 1, pp. 2963-2975, 2022. [DOI:10.1080/01430750.2020.1785937]
8. [8] S. Eslami, A. Gholami, A. Bakhtiari, M. Zandi, and Y. Noorollahi, Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future, Energy Conversion and Management, Vol. 200, No. May, p. 112107, 2019. [DOI:10.1016/j.enconman.2019.112107]
9. [9] D. Razeghi Jahromi, M. M. Gordali, A. Gholami, and M. Zandi, Floating Photovoltaic Solar Systems: Component Selection, Design, Installation, Operation, and Maintenance, Journal of Renewable and New Energy, Vol. 12, No. 1, pp. 173-181, 2024.
10. [10] M. Rezvani, A. Gholami, R. Gavagsaz-Ghoachani, M. Phattanasak, and M. Zandi, A review of the factors affecting the utilization of solar photovoltaic panels, in 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 2022, pp. 62-69. [DOI:10.1109/RI2C56397.2022.9910278]
11. [11] H. A. Kazem, M. T. Chaichan, A. H. A. Al-Waeli, R. Al-Badi, M. A. Fayad, and A. Gholami, Dust impact on photovoltaic/thermal system in harsh weather conditions, Solar Energy, Vol. 245, No. July, pp. 308-321, 2022. [DOI:10.1016/j.solener.2022.09.012]
12. [12] A. Gholami et al., Dust Accumulation On Photovoltaic Modules: A Review On The Effective Parameters, Sigma Journal of Engineering and Natural Sciences, Vol. 39, No. 1, pp. 45-57, 2021.
13. [13] M. Gandomzadeh et al., Dust mitigation methods and multi-criteria decision-making cleaning strategies for photovoltaic systems: Advances, challenges, and future directions, Energy Strategy Reviews, Vol. 57, No. October 2024, p. 101629, 2025. [DOI:10.1016/j.esr.2024.101629]
14. [14] H. Jafari, A. Poursalan, A. Gholami, R. Gavagsaz-Ghoachani, and M. Phattanasak, A Review of Solar Tracking Technologies: Mechanisms, Challenges, and Future Directions, in 2024 International Conference on Materials and Energy: Energy in Electrical Engineering (ICOME 2024), 2024, pp. 1-4. [DOI:10.1109/ICOME-EE64119.2024.10845331]
15. [15] A. Gholami, M. Ameri, M. Zandi, and R. Gavagsaz-Ghoachani, A Review on Dust Activities in Iran and Parameters Affecting Dust Accumulation on Photovoltaic Panels, Journal of Renewable and New Energy, Vol. 8, No. 2, pp. 146-158, 2021.
16. [16] S. A. Alenabi, A. Mansouri, A. Gholami, and R. Gavagsaz-Ghoachani, Simulation of wind flow effect on the cooling of solar panels (in Tehran), in 2024 11th Iranian Conference on Renewable Energy and Distribution Generation (ICREDG), 2024, pp. 1-4. [DOI:10.1109/ICREDG61679.2024.10607775]
17. [17] A. Gholami, S. H. Eslami, A. Tajik, M. Ameri, R. Gavagsaz Ghoachani, and M. Zandi, A review of dust removal methods from the surface of photovoltaic panels, Mechanical Engineering, Sharif Journal, Vol. 35, No. 2, pp. 117-127, 2019.
18. [18] A. Gholami, M. Ameri, M. Zandi, R. Gavagsaz Ghoachani, and H. A. Kazem, Predicting solar photovoltaic electrical output under variable environmental conditions: Modified semi-empirical correlations for dust, Energy for Sustainable Development, Vol. 71, pp. 389-405, 2022. [DOI:10.1016/j.esd.2022.10.012]
19. [19] H. A. Kazem, A. H. A. Al-Waeli, M. T. Chaichan, K. Sopian, A. Gholami, and W. E. Alnaser, Dust and cleaning impact on the performance of photovoltaic: an outdoor experimental study, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 45, No. 1, pp. 3107-3124, 2023. [DOI:10.1080/15567036.2023.2191064]
20. [20] C. E. Clement, J. P. Singh, E. Birgersson, Y. Wang, and Y. S. Khoo, Hotspot development and shading response of shingled PV modules, Solar Energy, Vol. 207, pp. 729-735, 2020. [DOI:10.1016/j.solener.2020.06.078]
21. [21] K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, and M. S. Islam, Effects of different environmental and operational factors on the PV performance: A comprehensive review, Energy Science & Engineering, Vol. 10, No. 2, pp. 656-675, 2022. [DOI:10.1002/ese3.1043]
22. [22] S. A. Hosseini, A. M. Kermani, and A. Arabhosseini, Experimental study of the dew formation effect on the performance of photovoltaic modules, Renewable Energy, Vol. 130, pp. 352-359, 2019. [DOI:10.1016/j.renene.2018.06.063]
23. [23] M. A. Al Mamun, M. Hasanuzzaman, and J. Selvaraj, Experimental investigation of the effect of partial shading on photovoltaic performance, IET Renewable Power Generation, Vol. 11, No. 7, pp. 912-921, 2017. [DOI:10.1049/iet-rpg.2016.0902]
24. [24] S. Bimenyimana, G. N. O. Asemota, M. C. Kemunto, and L. Li, Shading effects in photovoltaic modules: Simulation and experimental results, in 2017 2nd International Conference on Power and Renewable Energy (ICPRE), 2017, pp. 904-909. [DOI:10.1109/ICPRE.2017.8390665]
25. [25] A. K. Gupta, T. Maity, A. H, and Y. K. Chauhan, An electromagnetic strategy to improve the performance of PV panel under partial shading, Computers & Electrical Engineering, Vol. 90, p. 106896, 2021. [DOI:10.1016/j.compeleceng.2020.106896]
26. [26] K. Rajani and T. Ramesh, Maximum power enhancement under partial shadings using modified Sudoku reconfiguration, CSEE Journal of Power and Energy Systems, Vol. 7, No. 6, pp. 1187-1201, 2020.
27. [27] S. M. Goetz, C. Wang, Z. Li, D. L. K. Murphy, and A. V. Peterchev, Concept of a distributed photovoltaic multilevel inverter with cascaded double H-bridge topology, International Journal of Electrical Power & Energy Systems, Vol. 110, pp. 667-678, 2019. [DOI:10.1016/j.ijepes.2019.03.054]
28. [28] S. Laamami, M. Benhamed, and L. Sbita, Analysis of shading effects on a photovoltaic array, in 2017 International Conference on Green Energy Conversion Systems (GECS), 2017, pp. 1-5. [DOI:10.1109/GECS.2017.8066212]
29. [29] S. G. Krishna and T. Moger, Optimal SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Increase Power Output Under Non-Uniform Irradiance, IEEE Transactions on Energy Conversion, Vol. 34, No. 4, pp. 1973-1984, 2019. [DOI:10.1109/TEC.2019.2921625]
30. [30] S. Fadhel et al., Maximum power point analysis for partial shading detection and identification in photovoltaic systems, Energy Conversion and Management, Vol. 224, p. 113374, 2020. [DOI:10.1016/j.enconman.2020.113374]
31. [31] D. Ortiz-munoz, D. Luviano-cruz, L. A. Perez-dominguez, F. Garcia-luna, and A. G. Rodriguez-ramirez, Hybrid Fuzzy - DDPG Approach for Efficient MPPT in Partially Shaded Photovoltaic Panels, 2025. [DOI:10.3390/app15094869]
32. [32] S. I. Abubakar, C. H. See, S. Member, M. Sukki, S. Member, and R. Mahendiran, Deploying Agrivoltaics in Sub-Saharan Africa : A Sustainable Pathway Towards Energy-Food Security-Challenges and Opportunities : A Review, IEEE Access, Vol. PP, p. 1, 2025.
33. [33] M. A. B. Siddique, D. Zhao, and A. U. Rehman, Emerging maximum power point control algorithms for PV system: review, challenges and future trends, Electrical Engineering, 2025. [DOI:10.1007/s00202-025-03002-0]
34. [34] B. Dergisi, K. Journal, and E. Sciences, IMPACT OF PARTIAL SHADING GEOMETRY ON THE ENERGY AND EXERGY PERFORMANCE, Vol. 8055, pp. 321-335, 2025. [DOI:10.36306/konjes.1573123]
35. [35] Z. Piryaei, A. Gholami, and M. Zandi, 4E performance evaluation of renewable microgrids: Comparing hydrogen and battery storage for nearly net zero energy buildings, Energy Conversion and Management, Vol. 332, No. February, p. 119711, 2025. [DOI:10.1016/j.enconman.2025.119711]
36. [36] S. B. Santra, S. K. Mohanty, and T. Roy Choudhury, Simplified circuit model of novel bypass diode based PV array for circulating current and power loss minimization under partial shading, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 44, No. 1, pp. 1-18, 2024. [DOI:10.1108/COMPEL-06-2024-0257]
37. [37] M. Ameri, M. Gandomzadeh, A. A. Yaghoubi, A. Gholami, M. Zandi, and R. Gavagsaz-Ghoachani, Revolutionizing Solar Panel Maintenance in Photovoltaic Systems: Reviewing Intelligent UAV Solutions for Efficient Dust Mitigation and Perspectives, in 7th International Conference on Advances in Mechanical Engineering (ICAME 2024), 2024, Vol. 11, No. 1, pp. 111-119.
38. [38] F. Belhachat and C. Larbes, PV array reconfiguration techniques for maximum power optimization under partial shading conditions: A review, Solar Energy, Vol. 230, pp. 558-582, 2021. [DOI:10.1016/j.solener.2021.09.089]
39. [39] S. Ghosh, S. K. Singh, and V. K. Yadav, Experimental investigation of hotspot phenomenon in PV arrays under mismatch conditions, Solar Energy, Vol. 253, pp. 219-230, 2023. [DOI:10.1016/j.solener.2023.02.033]
40. [40] D. Razeghi Jahromi, M. M. Gordali, A. Gholami, and M. Zandi, The causes and effects of the degradation of solar photovoltaic panels' components, Iranian Electric Industry Journal of Quality and Productivity, Vol. 12, No. 4, pp. 18-32, 2024.
41. [41] A. Yaghoubi, M. Gandomzadeh, A. Parsay, A. Gholami, R. Gavagsaz-Ghoachani, and Z. Majid, A Review on Machine Learning Model Implementation for Photovoltaic Systems, in The 11th Iranian Conference on Renewable Energy & Distributed Generation (ICREDG 2024), 2024, pp. 1-5. [DOI:10.1109/ICREDG61679.2024.10607821]
42. [42] A. Hoorsun, M. Gandomzadeh, A. Yaghoubi, A. Parsay, A. Gholami, and M. Zandi, Insights and Research Trends of Dust and Cleaning in Solar Energy: A Bibliometric Review Study, in 9th International Conference on Technology and Energy Management (ICTEM 2024 ), 2024, pp. 1-5. [DOI:10.1109/ICTEM60690.2024.10632021]
43. [43] N. N. N. N. N. Nipu, A. Saha, M. F. Khan, and F. Khan, Effect of accumulated dust on the performance of solar PV module, International Journal of Engineering & Technology, Vol. 6, No. 1, p. 9, 2016. [DOI:10.14419/ijet.v6i1.6316]
44. [44] E. Özkalay, F. Valoti, M. Caccivio, A. Virtuani, G. Friesen, and C. Ballif, The effect of partial shading on the reliability of photovoltaic modules in the built-environment, EPJ Photovoltaics, Vol. 15, p. 7, 2024. [DOI:10.1051/epjpv/2024001]
45. [45] A. A. Yaghoubi, M. Gandomzadeh, A. Gholami, R. Gavagsaz-Ghoachani, M. Zandi, and M. Phattanasak, Harnessing Machine Learning with Advanced Linear Regression Models to Forecast PV System, in 2024 International Conference on Materials and Energy: Energy in Electrical Engineering (ICOME 2024), 2024, No. Ml, pp. 1-4. [DOI:10.1109/ICOME-EE64119.2024.10845673]
46. [46] A. M. Humada, M. H. Bin Sulaiman, M. Hojabri, H. M. Hamada, and M. N. Ahmed, A review on photovoltaic array behavior, configuration strategies and models under mismatch conditions, ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 7, pp. 4896-4903, 2016.
47. [47] D. Yousri, T. S. Babu, R. K. Pachauri, H. Zeineldin, and E. F. El-Saadany, A novel argyle puzzle for partial shading effect mitigation with experimental validation, Renewable Energy, Vol. 225, p. 120307, 2024. [DOI:10.1016/j.renene.2024.120307]
48. [48] S. Vadivel, C. S. Boopthi, S. Ramasamy, M. Ahsan, J. Haider, and E. M. G. Rodrigues, Performance Enhancement of a Partially Shaded Photovoltaic Array by Optimal Reconfiguration and Current Injection Schemes, Energies, Vol. 14, No. 19, p. 6332, 2021. [DOI:10.3390/en14196332]
49. [49] A. A. Yaghoubi, M. Gandomzadeh, A. Gholami, R. Gavagsaz Ghoachani, M. Zandi, and H. A. Kazem, Optimize photovoltaic panels cleaning scheduling framework based on variations of hourly-based active electricity pricing in the market, Solar Energy, Vol. 275, No. May, p. 112633, 2024. [DOI:10.1016/j.solener.2024.112633]
50. [50] D. Razeghi Jahromi, A. Minoofar, G. Ghorbani, A. Gholami, M. Ameri, and M. Zandi, Harnessing Sunlight on Water: A Comprehensive Analysis of Floating Photovoltaic Systems and their Implications Compared to Terrestrial, Journal of Renewable Energy and Environment, 2023.
51. [51] V. P. Madhanmohan, M. Nandakumar, and A. Saleem, Enhanced performance of partially shaded photovoltaic arrays using diagonally dispersed total cross tied configuration, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, Vol. 47, No. 1, pp. 477-495, 2020. [DOI:10.1080/15567036.2020.1826008]
52. [52] L. Sollazzo, G. Mangherini, V. Diolaiti, and D. Vincenzi, A Comprehensive Review of Agrivoltaics: Multifaceted Developments and the Potential of Luminescent Solar Concentrators and Semi-Transparent Photovoltaics, Sustainability (Switzerland), Vol. 17, No. 5, 2025. [DOI:10.3390/su17052206]
53. [53] A. Aryanfar, A. Gholami, M. Pourgholi, and M. Zandi, Multicriteria wind potential assessment using fuzzy logic in decision making: A case study of Iran, Wind Energy, No. February, p. we.2640, 2021. [DOI:10.1002/WE.2640/v3/response1]
54. [54] A. Aryanfar et al., Multi-criteria prioritization of the renewable power plants in Australia using the fuzzy logic in decision-making method (FMCDM), Clean Energy, Vol. 6, No. 1, pp. 16-34, 2022. [DOI:10.1093/ce/zkab048]
55. [55] A. Mohapatra, B. Nayak, and K. B. Mohanty, Analytical approach to locate multiple power peaks of photovoltaic array under partial shading condition and hybrid array configuration schemes to reduce mismatch losses, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, Vol. 47, No. 1, pp. 9193-9214, 2021. [DOI:10.1080/15567036.2021.1945710]
56. [56] A. Parsay et al., Enhancing photovoltaic efficiency: An in-depth systematic review and critical analysis of dust monitoring, mitigation, and cleaning techniques, Applied Energy, Vol. 388, No. February, p. 125668, 2025. [DOI:10.1016/j.apenergy.2025.125668]
57. [57] P. Sharma and R. K. Mishra, Comprehensive study on photovoltaic cell's generation and factors affecting its performance: A Review, Materials for Renewable and Sustainable Energy, Vol. 14, No. 1, pp. 1-28, 2025. [DOI:10.1007/s40243-024-00292-5]
58. [58] A. K. Soni, K. C. Jana, D. K. Gupta, P. K. Pal, and A. K. V. Jha, Design and Analysis of an Adaptive Global Maximum Power Point Tracking Algorithm for Enhanced Partial Shading Detection and GMPP Tracking, Arabian Journal for Science and Engineering, 2025. [DOI:10.1007/s13369-025-10018-y]
59. [59] Ö. Karaduman and K. Ş. Parlak, A Dual-Adaptive Perspective on PV Array Reconfiguration with Genetic Algorithms Under Partial Shading Conditions, Applied Sciences (Switzerland), Vol. 15, No. 4, 2025. [DOI:10.3390/app15041762]
60. [60] S. Gallardo-Saavedra and B. Karlsson, Simulation, validation and analysis of shading effects on a PV system, Solar Energy, Vol. 170, pp. 828-839, 2018. [DOI:10.1016/j.solener.2018.06.035]
61. [61] P. D. S. Vicente, T. C. Pimenta, and E. R. Ribeiro, Photovoltaic Array Reconfiguration Strategy for Maximization of Energy Production, International Journal of Photoenergy, Vol. 2015, pp. 1-11, 2015. [DOI:10.1155/2015/592383]
62. [62] A. Gholami et al., Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling, Solar Energy, Vol. 252, pp. 176-194, 2023. [DOI:10.1016/j.solener.2023.01.039]
63. [63] H. A. Kazem, M. T. Chaichan, A. H. A. Al-Waeli, and A. Gholami, A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 44, No. 3, pp. 6709-6736, 2022. [DOI:10.1080/15567036.2022.2100517]
64. [64] A. Gholami, M. Ameri, M. Zandi, and R. Gavagsaz Ghoachani, Electrical, thermal and optical modeling of photovoltaic systems: Step-by-step guide and comparative review study, Sustainable Energy Technologies and Assessments, Vol. 49, p. 101711, 2022. [DOI:10.1016/j.seta.2021.101711]
65. [65] A. Gholami, M. Ameri, M. Zandi, R. G. Ghoachani, S. Pierfederici, and H. A. Kazem, Step-By-Step Guide to Model Photovoltaic Panels: An Up-To-Date Comparative Review Study, IEEE Journal of Photovoltaics, Vol. 12, No. 4, pp. 915-928, 2022. [DOI:10.1109/JPHOTOV.2022.3169525]
66. [66] A. Gholami, M. Ameri, M. Zandi, R. Gavagsaz Ghoachani, and M. Gholami, A fast and precise double-diode model for predicting photovoltaic panel electrical behavior in variable environmental conditions, International Journal of Ambient Energy, Vol. 44, No. 1, pp. 1298-1315, 2023. [DOI:10.1080/01430750.2023.2173290]
67. [67] A. K. B. G. P. B. Abdulrazzaq, Enhanced Single-Diode Model Parameter Extraction Method for Photovoltaic Cells and Modules Based on Integrating Genetic Algorithm, Particle Swarm Optimization, and Comparative Objective Functions, Journal of Computational Electronics, Vol. 24, No. 2, pp. 1-18, 2025. [DOI:10.1007/s10825-025-02282-w]
68. [68] A. Gholami, M. Ameri, M. Zandi, and R. Gavagsaz Ghoachani, A single-diode model for photovoltaic panels in variable environmental conditions: Investigating dust impacts with experimental evaluation, Sustainable Energy Technologies and Assessments, Vol. 47, No. October, p. 101392, 2021. [DOI:10.1016/j.seta.2021.101392]
69. [69] R. Vieira, F. de Araújo, M. Dhimish, and M. Guerra, A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules, Energies, Vol. 13, No. 10, p. 2472, 2020. [DOI:10.3390/en13102472]
70. [70] M. Dhimish, V. Holmes, P. Mather, and M. Sibley, Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance, Solar Energy Materials and Solar Cells, Vol. 179, No. February, pp. 72-79, 2018. [DOI:10.1016/j.solmat.2018.02.019]
71. [71] H. Hanifi, D. Dassler, M. Turek, and J. Schneider, Evaluation and Comparison of PV Modules With Different Designs of Partial Cells in Desert and Moderate Climates, IEEE Journal of Photovoltaics, Vol. 8, No. 5, pp. 1266-1273, 2018. [DOI:10.1109/JPHOTOV.2018.2841515]
72. [72] B. B. Pannebakker, A. C. de Waal, and W. G. J. H. M. van Sark, Photovoltaics in the shade: one bypass diode per solar cell revisited, Progress in Photovoltaics: Research and Applications, Vol. 25, No. 10, pp. 836-849, 2017. [DOI:10.1002/pip.2898]
73. [73] M. Z. Ramli and Z. Salam, Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading, Renewable Energy, Vol. 139, pp. 1336-1354, 2019. [DOI:10.1016/j.renene.2019.02.072]
74. [74] J.-S. Park, W.-J. Oh, J.-H. Joo, J.-S. Yi, B.-Y. Hong, and J.-H. Lee, Design of High-Power and High-Density Photovoltaic Modules Based on a Shingled Cell String, Journal of Nanoscience and Nanotechnology, Vol. 20, No. 11, pp. 6996-7001, 2020. [DOI:10.1166/jnn.2020.18837]
75. [75] O. Attia, H. Souissi, M. Khalil, and C. Ben Salah, Functioning of the Half-Cells Photovoltaic Module in hybrid EV under Partial Shading, in 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), 2021, pp. 1252-1257. [DOI:10.1109/SSD52085.2021.9429410]
76. [76] J. Qian, A. Thomson, A. Blakers, and M. Ernst, Comparison of Half-Cell and Full-Cell Module Hotspot-Induced Temperature by Simulation, IEEE Journal of Photovoltaics, Vol. 8, No. 3, pp. 834-839, 2018. [DOI:10.1109/JPHOTOV.2018.2817692]
77. [77] Z. Wen, J. Chen, X. Cheng, H. Niu, and X. Luo, A new and simple split series strings approach for adding bypass diodes in shingled cells modules to reduce shading loss, Solar Energy, Vol. 184, pp. 497-507, 2019. [DOI:10.1016/j.solener.2019.03.099]
78. [78] R. K. Pachauri, J. Bai, I. Kansal, O. P. Mahela, and B. Khan, Shade dispersion methodologies for performance improvement of classical total cross‐tied photovoltaic array configuration under partial shading conditions, IET Renewable Power Generation, Vol. 15, No. 8, pp. 1796-1811, 2021. [DOI:10.1049/rpg2.12147]
79. [79] R. Pachauri, A. S. Yadav, Y. K. Chauhan, A. Sharma, and V. Kumar, Shade dispersion-based photovoltaic array configurations for performance enhancement under partial shading conditions, International Transactions on Electrical Energy Systems, Vol. 28, No. 7, p. e2556, 2018. [DOI:10.1002/etep.2556]
80. [80] O. Bingöl and B. Özkaya, Analysis and comparison of different PV array configurations under partial shading conditions, Solar Energy, Vol. 160, pp. 336-343, 2018. [DOI:10.1016/j.solener.2017.12.004]
81. [81] C. Saiprakash, A. Mohapatra, B. Nayak, and S. R. Ghatak, Analysis of partial shading effect on energy output of different solar PV array configurations, in Materials Today: Proceedings, 2021, Vol. 39, pp. 1905-1909. [DOI:10.1016/j.matpr.2020.08.307]
82. [82] C.-E. Ye, C.-C. Tai, Y.-P. Huang, and J.-J. Chen, Dispersed partial shading effect and reduced power loss in a PV array using a complementary SuDoKu puzzle topology, Energy Conversion and Management, Vol. 246, p. 114675, 2021. [DOI:10.1016/j.enconman.2021.114675]
83. [83] A. Kumar and R. Agarwal, Enhancement of power output of partially shaded photovoltaic system using optimal Sudoku puzzle based triple-tied-cross-link reconfiguration techniques, Engineering Research Express, Vol. 5, No. 4, p. 045036, 2023. [DOI:10.1088/2631-8695/ad0198]
84. [84] D. Ramesh and K. Anbalagan, Cyclic back shift method for maximizing PV array power under partial shading, Electrical Engineering, pp. 1-17, 2024. [DOI:10.1007/s00202-024-02855-1]
85. [85] G. Sai Krishna and T. Moger, Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions, Renewable and Sustainable Energy Reviews, Vol. 109, pp. 333-348, 2019. [DOI:10.1016/j.rser.2019.04.037]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bozorgpuore S, Gholami A. Impacts of Shading on Photovoltaic Panel Performance and Mitigating Strategies. ieijqp 2025; 14 (2)
URL: http://ieijqp.ir/article-1-1025-fa.html

بزرگپور شایان، غلامی اصلان. آثار سایه بر عملکرد پنل خورشیدی فتوولتائیک و روش‌های مقابله با آن. نشریه کیفیت و بهره وری صنعت برق ایران. 1404; 14 (2)

URL: http://ieijqp.ir/article-1-1025-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 14، شماره 2 - ( 5-1404 ) برگشت به فهرست نسخه ها
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4714