[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 1 (4-2025) ::
ieijqp 2025, 14(1): 19-28 Back to browse issues page
An Interleaved DC-DC Converter with High Voltage Gain and Efficiency for Photovoltaic Applications
Mehdi Alizadeh1 , Majid Delshad *1 , Mohammad rouhollah Yazdani1 , Bahador Fani1
1- Isfahan (Khorasgan) Branch, Islamic Azad University
Abstract:   (132 Views)

This paper introduces an interleaved high step-up converter with a low component auxiliary circuit. The auxiliary circuit provides zero-voltage switching (ZVS) conditions for the main switches, while the auxiliary switch operates with zero-current switching (ZCS). Additionally, the auxiliary inductors are coupled with the main inductors, effectively transferring the auxiliary circuit's energy to the output. The auxiliary circuit is modular and can be expanded to accommodate additional branches. Due to the high voltage gain of the converter, the voltage stress on the main switches is low. Furthermore, the short on-time of the auxiliary switch results in a low circulating current in the auxiliary circuit, minimizing additional losses in the converter. Due to the absence of switching losses, capacitive turn-on losses, and reverse recovery issues in the diodes, as well as the low conduction losses of the switches resulting from reduced voltage stress, the converter achieves high efficiency. The proposed converter has been thoroughly analyzed, and to validate the theoretical analysis, a 240W prototype has been constructed and tested.
 

Keywords: High voltage gain, Interleaved converter, Auxiliary circuit, Soft switching
Full-Text [PDF 1182 kb]   (40 Downloads)    
Type of Study: Research |
Received: 2024/12/25 | Accepted: 2025/04/5 | Published: 2025/05/14
References
1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Members may also deposit reference lists here too. Akhlaghi, B., Farzanehfard, H., Thiruvady, D., Faraji, R., & Shiri, F. (2023). ZVT interleaved high step-up converter for renewable energy systems. 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Babol, Iran, 1-6. [DOI:10.1109/PEDSTC57673.2023.10087127]
2. Alghaytani, M. L., O'Connell, R. M., Islam, N. E., Khan, M. M. S., & Guerrero, J. M. (2020). A high step-up interleaved DC-DC converter with voltage multiplier and coupled inductors for renewable energy systems. IEEE Access, 8, 123165-123174. [DOI:10.1109/ACCESS.2020.3007137]
3. Asghari, A., & Yegane, Z. J. (2024). A high step-up DC-DC converter with high voltage gain and zero-voltage transition. IEEE Transactions on Industrial Electronics, 71(7), 6946-6954. [DOI:10.1109/TIE.2023.3312434]
4. Babaei, E., Saadatizadeh, Z., & Mohammadi-Ivatloo, B. (2017). A three-port soft switching bidirectional DC-DC converter without input current ripple. Iranian Electric Industry Journal of Quality and Productivity, 5(2), 51-60.
5. Es-Haghpour, I., Delshad, M., & Javadi, S. (2021). A new interleaved ZVT high step-up converter with low input current ripple. International Journal of Electronics, 109(11), 1935-1953. [DOI:10.1080/00207217.2021.2001861]
6. Ghorbani-Esfahlan, A., Varesi, K., & Madadi Kojabadi, H. (2023). Design and implementation of an improved non-isolated step-up DC-DC converter with continuous input current and common-ground point suitable for DC micro-grids and low-power solar systems. Iranian Electric Industry Journal of Quality and Productivity, 12(1), 57-70.
7. Goudarzhagh, H., Fathi, S. H., & Esfandiari, S. (2025). A novel coupled winding nonisolated quasi-Z-source high step-up DC-DC converter with low input current ripple. IEEE Transactions on Power Electronics, 40(4), 6097-6106. [DOI:10.1109/TPEL.2024.3510635]
8. Hakemi, A., Sanatkar-Chayjani, M., & Monfared, M. (2017). Δ-Source impedance network. IEEE Transactions on Industrial Electronics, 64(10), 7842-7851. [DOI:10.1109/TIE.2017.2698421]
9. He, Y., Chen, L., & Sun, X. (2024). An interleaved buck-boost-Zeta converter with coupled inductor multiplier cell and zero input current ripple for high step-up applications. IEEE Access, 12, 104807-104817. [DOI:10.1109/ACCESS.2024.3435140]
10. Hosseini Kordkheili, A., & Ghasemi Marzbali, A. (2023). The allocation of optimal capacity of solar sources to achieve the maximum penetration rate and improve the voltage profile in distribution systems. Iranian Electric Industry Journal of Quality and Productivity, 12(2).
11. Karthikeyan, V., Kumaravel, S., & Gurukumar, G. (2019). High step-up gain DC-DC converter with switched capacitor and regenerative boost configuration for solar PV applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(12), 2022-2026. [DOI:10.1109/TCSII.2019.2892144]
12. Liu, T., Lin, M., & Ai, J. (2020). High step-up interleaved DC-DC converter with asymmetric voltage multiplier cell and coupled inductor. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(4), 4209-4220. [DOI:10.1109/JESTPE.2019.2931634]
13. Meraj, M. S., Bhaskar, S., Iqbal, A., Al-Emadi, N., & Rahman, S. (2020). Interleaved multilevel boost converter with minimal voltage multiplier components for high-voltage step-up applications. IEEE Transactions on Power Electronics, 35(12), 12816-12833. [DOI:10.1109/TPEL.2020.2992602]
14. Nathan, K., Ghosh, S., Siwakoti, Y., & Long, T. (2019). A new DC-DC converter for photovoltaic systems: Coupled-inductors combined Cuk-SEPIC converter. IEEE Transactions on Energy Conversion, 34(1), 191-201. [DOI:10.1109/TEC.2018.2876454]
15. Nouri, T., Kurdkandi, N. V., & Shaneh, M. (2020). A novel ZVS high step-up converter with built-in transformer voltage multiplier cell. IEEE Transactions on Power Electronics, 35(12), 12871-12886. [DOI:10.1109/TPEL.2020.2995662]
16. Sachit, A. H., Fani, B., Delshad, M., Shahgholian, G., & Golsorkhi Esfahani, A. (2023). Analysis and implementation of second-order step-up converter using winding cross coupled inductors for photovoltaic applications. Journal of Solar Energy Research, 8(2), 1516-1525. [DOI:10.22059/jser.2023.357285.1291]
17. Shamsi, T., Delshad, M., Adib, E., & Yazdani, M. R. (2021). A new simple-structure passive lossless snubber for DC-DC boost converters. IEEE Transactions on Industrial Electronics, 68(3), 2207-2214. [DOI:10.1109/TIE.2020.2973906]
18. Torkan, A., & Ehsani, M. (2018). A novel non-isolated Z-source DC-DC converter for photovoltaic applications. IEEE Transactions on Industrial Applications, 54(5), 4574-4583. [DOI:10.1109/TIA.2018.2833821]
19. Tseng, K. C., Cheng, C. A., & Chen, C. T. (2017). High step-up interleaved boost converter for distributed generation using renewable and alternative power sources. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(2), 713-722. [DOI:10.1109/JESTPE.2016.2611641]
20. Vaghela, M. A., & Mulla, M. A. (2023). High step-up gain converter based on two-phase interleaved coupled inductor without right-hand plane zero. IEEE Transactions on Power Electronics, 38(5), 5911-5927. [DOI:10.1109/TPEL.2023.3239553]
21. Valdez-Resendiz, J. E., Silva-Vera, E. D., Rosas-Caro, J. C., & Hernandez, F. D. (2024). Improved interleaved boost converter with reduced inductors. 2024 International Symposium on Electromobility (ISEM), Guadalajara, Mexico, 1-5. [DOI:10.1109/ISEM62699.2024.10786765]
22. Wang, Z., Zhang, G., Chen, S., & Zhang, Y. (2018). Two impedance-network DC-DC converters based on switched-capacitor techniques. Proceedings of the IEEE International Power Electronics Applications Conference and Exposition, 1-5. [DOI:10.1109/PEAC.2018.8590345]
23. Yi, J. H., Choi, W., & Cho, B. H. (2017). Zero-voltage transition interleaved boost converter with an auxiliary coupled inductor. IEEE Transactions on Power Electronics, 32(8), 5917-5930. [DOI:10.1109/TPEL.2016.2614843]
24. Zhang, L., et al. (2023). High step-up DC/DC converter based on switched inductor and switched capacitor unit. 2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Shanghai, China, 382-386. [DOI:10.1109/PEDG56097.2023.10215296]
25. Zhang, Y., Fu, C., Sumner, M., & Wang, P. (2018). A wide input-voltage range quasi-Z-source boost DC-DC converter with high-voltage gain for fuel cell vehicles. IEEE Transactions on Industrial Electronics, 65(6), 5201-5212. [DOI:10.1109/TIE.2017.2745449]
26. Zuo, Y., Cobaleda, D. B., Shen, X., & Martinez, W. (2024). High step-up ratio interleaved boost L-LLC resonant converter with PWM and PFM control for wide input and output voltage range. 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 1396-1402. [DOI:10.1109/APEC48139.2024.10509079]


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alizadeh M, Delshad M, Yazdani M R, Fani B. An Interleaved DC-DC Converter with High Voltage Gain and Efficiency for Photovoltaic Applications. ieijqp 2025; 14 (1) :19-28
URL: http://ieijqp.ir/article-1-1021-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 1 (4-2025) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.07 seconds with 40 queries by YEKTAWEB 4710