1. Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: Theory and application. IEEE Access, 2, 537-557. [ DOI:10.1109/ACCESS.2014.2323353] 2. Hamidi, R. J., & Livani, H. (2017). Traveling-Wave-Based Fault-Location Algorithm for Hybrid Multiterminal Circuits. IEEE Trans. on Power Del, 32(1), 135-144. [ DOI:10.1109/TPWRD.2016.2589265] 3. Heijmans, H. J. A. M. (1994). Morphological Image Operators. New York, NY, USA: Academic. 4. Kawady, T., & Stenzel, J. (2003). A practical fault location approach for double circuit transmission lines using single end data. IEEE Trans. Power Del, 18(4), 1166-1173. [ DOI:10.1109/TPWRD.2003.817503] 5. Korkali, M., & Abur, A. (2013). Optimal deployment of widearea synchronized measurements for fault-location observability. IEEE Trans Power Syst, 28(1), 482-489. [ DOI:10.1109/TPWRS.2012.2197228] 6. Lee, H., & Mousa, A. (1996). GPS travelling wave fault locator systems: investigation into the anomalous measurements related to lightning strikes. IEEE Trans. Power Del, 11(3), 1214 -1223. [ DOI:10.1109/61.517474] 7. Lin, X., Weng, H., & Wang, B. (2009). A generalize method to improve the location accuracy of the single-ended sampled data and lumped parameter model based fault locators. Int. J. Electr. Power Energy Syst, 31(5), 201-205. [ DOI:10.1016/j.ijepes.2009.01.003] 8. Lopes, F.V. (2016). Settings-free traveling-wave-based earth fault location using unsynchronized two-terminal data. IEEE Trans. Power Del, 31(5), 2296-2298. [ DOI:10.1109/TPWRD.2016.2551367] 9. Lopes, F. V., Dantas, K. M., Silva, K. M., & Costa, F. B. (2018). Accurate two-terminal transmission line fault location using traveling waves. IEEE Trans. Power Del, 33(2), 873-880. [ DOI:10.1109/TPWRD.2017.2711262] 10. Lopes, F. V., Lima, P., Ribeiro, J. P. G., Tiago, R. H., Silva, K. M., Leite Jr, E. J. S., Neves, W. L. A., & Rocha, G. (2019). Practical methodology for two-terminal traveling wave-based fault location eliminating the need for line parameters and time synchronization. IEEE Trans. Power Del, 34(6), 2123-2134. [ DOI:10.1109/TPWRD.2019.2891538] 11. Naidu, O. D., & Pradhan, A. K. (2018). A traveling wave-based fault location method using unsynchronized current measurements. IEEE Trans. Power Del, 34(2), 505-513. [ DOI:10.1109/TPWRD.2018.2875598] 12. Naidu, O.D., & Pradhan, A. K. (2021). Precise Traveling Wave Based Transmission Line Fault Location Method Using Single-Ended Data. IEEE Trans.Ind. Inform, 17(8), 5197 - 5207. [ DOI:10.1109/TII.2020.3027584] 13. Namdari, F., & Salehi, M. (2017). A high-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology. IEEE Trans. Power Del, 32(1), 246-53. [ DOI:10.1109/TPWRD.2016.2571341] 14. Peng, R. N., Zhou, L., Meng, X., Hu,Y., Shen,Y., & Xue, X. (2020). Fault Location Method in Power Network by Applying Accurate Information of Arrival Time Differences of Modal Traveling Waves. IEEE Trans. Ind. Inform, 16(5), 3124-3132. [ DOI:10.1109/TII.2019.2903267] 15. Pereira, C.E.M., & Zanetta, Jr., L.C. (2004). Fault location in transmission lines using one-terminal post fault voltage data. IEEE Trans. Power Del, 19(2), 570- 575. [ DOI:10.1109/TPWRD.2004.824391] 16. Poudineh-Ebrahimi, F., & Ghazizadeh-Ahsaee, M. (2018) Accurate and comprehe nsive fault location algorithm for two-terminal transmission lines. IET Gen., Transm. Distrib, 12(19), 4334 - 4340. [ DOI:10.1049/iet-gtd.2018.6084] 17. Rui, L., Fei, W., Guoqing, F., Xue, X., & Ruib, Z. (2016). A general fault location method in complex power grid based on wide-area traveling wave data acquisition. Int. J. Elect. Power Energy Syst, 83, 213-218. [ DOI:10.1016/j.ijepes.2016.04.021] 18. Saha, M. M., Izykowski, J., & Rosolowski, E. (2010). Fault Location on Power Networks, ser. Power Systems. London: Ed. Springer. [ DOI:10.1007/978-1-84882-886-5] 19. Salehi, M., Birjandi, A. A. M., & Dong, X. (2021). Determining minimum number and placement of fault detectors in transmission network for fault location observability. Int. J. Electr. Power Eng, 124, 106386. [ DOI:10.1016/j.ijepes.2020.106386] 20. Salehi, M., & Namdari, F. (2018) Fault location on branched networks using mathematical morphology. IET Gen., Transm. Distrib, 12(1), 207-16. [ DOI:10.1049/iet-gtd.2017.0598] 21. Schweitzer III, E. O. (1990, Oct). A review of impedance-based fault locating experience. 14th Annual Iowa-Nebraska System Protection Seminar, Omaha, Nebraska. 22. Spoor, D., & Zhu, J. G. (2006). Improved single-ended traveling-wave fault location algorithm based on experience with conventional substation transducers. IEEE Trans. Power Del, 23(3), 1714-1720. [ DOI:10.1109/TPWRD.2006.878091] 23. Wang, J., & Zhang, Y. (2022). Traveling Wave Propagation Characteristic-Based LCC-MMC Hybrid HVDC Transmission Line Fault Location Method. IEEE Trans. Power Del, 37(1), 208-218. [ DOI:10.1109/TPWRD.2021.3055840] 24. Wu, Q. H. . Zhang, J. F., & Zhang, D. J. (2003). Ultra-high-speed directional protection of transmission lines using mathematical morphology. IEEE Trans. Power Del, 18(4), 1127-1133. [ DOI:10.1109/TPWRD.2003.817513] 25. Das, S., Santoso, S., Gaikwad, A., & Patel, M. (2014). Impedance-based fault location in transmission networks: Theory and application. IEEE Access, 2, 537-557. [ DOI:10.1109/ACCESS.2014.2323353] 26. Gopakumar, P., Reddy, M. J. B, & Mohanta, D. K. (2015). Adaptive fault identification and classification methodology for smart power grids using synchronous phasor angle measurements, IET Gener. Transm. Distrib., 9(2), 133-145. [ DOI:10.1049/iet-gtd.2014.0024] 27. Guillen, D., Paternina, M.R.A., Zamora, A., et al. (2015). Detection and classification of faults in transmission lines using the maximum wavelet singular value and Euclidean norm. IET Gener. Transm. Distrib., 9(15), 2294-2302. [ DOI:10.1049/iet-gtd.2014.1064] 28. Hamidi, R. J., & Livani, H. (2017). Traveling-Wave-Based Fault-Location Algorithm for Hybrid Multiterminal Circuits. IEEE Trans. on Power Del, 32(1), 135-144. [ DOI:10.1109/TPWRD.2016.2589265] 29. Heijmans, H. J. A. M. (1994). Morphological Image Operators. New York, NY, USA: Academic. 30. Kawady, T., & Stenzel, J. (2003). A practical fault location approach for double circuit transmission lines using single end data. IEEE Trans. Power Del, 18(4), 1166-1173. [ DOI:10.1109/TPWRD.2003.817503] 31. Korkali, M., & Abur, A. (2013). Optimal deployment of widearea synchronized measurements for fault-location observability. IEEE Trans Power Syst, 28(1), 482-489. [ DOI:10.1109/TPWRS.2012.2197228] 32. Lee, H., & Mousa, A. (1996). GPS travelling wave fault locator systems: investigation into the anomalous measurements related to lightning strikes. IEEE Trans. Power Del, 11(3), 1214 -1223. [ DOI:10.1109/61.517474] 33. Lin, X., Weng, H., & Wang, B. (2009). A generalize method to improve the location accuracy of the single-ended sampled data and lumped parameter model based fault locators. Int. J. Electr. Power Energy Syst, 31(5), 201-205. [ DOI:10.1016/j.ijepes.2009.01.003] 34. Lopes, F.V. (2016). Settings-free traveling-wave-based earth fault location using unsynchronized two-terminal data. IEEE Trans. Power Del, 31(5), 2296-2298. [ DOI:10.1109/TPWRD.2016.2551367] 35. Lopes, F. V., Dantas, K. M., Silva, K. M., & Costa, F. B. (2018). Accurate two-terminal transmission line fault location using traveling waves. IEEE Trans. Power Del, 33(2), 873-880. [ DOI:10.1109/TPWRD.2017.2711262] 36. Lopes, F. V., Lima, P., Ribeiro, J. P. G., Tiago, R. H., Silva, K. M., Leite Jr, E. J. S., Neves, W. L. A., & Rocha, G. (2019). Practical methodology for two-terminal traveling wave-based fault location eliminating the need for line parameters and time synchronization. IEEE Trans. Power Del, 34(6), 2123-2134. [ DOI:10.1109/TPWRD.2019.2891538] 37. Naidu, O. D., & Pradhan, A. K. (2018). A traveling wave-based fault location method using unsynchronized current measurements. IEEE Trans. Power Del, 34(2), 505-513. [ DOI:10.1109/TPWRD.2018.2875598] 38. Naidu, O.D., & Pradhan, A. K. (2021). Precise Traveling Wave Based Transmission Line Fault Location Method Using Single-Ended Data. IEEE Trans.Ind. Inform, 17(8), 5197 - 5207. [ DOI:10.1109/TII.2020.3027584] 39. Namdari, F., & Salehi, M. (2017). A high-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology. IEEE Trans. Power Del, 32(1), 246-53. [ DOI:10.1109/TPWRD.2016.2571341] 40. زیرنویسها 41. Ngu, E. E., & Ramar, K. (2011). A combined impedance and traveling wave based fault location method for the multi-terminal transmission line. Int. J. Elect. Power Energy Syst, 33(10), 1767-1775. [ DOI:10.1016/j.ijepes.2011.08.020] 42. Peng, R. N., Zhou, L., Meng, X., Hu,Y., Shen,Y., & Xue, X. (2020). Fault Location Method in Power Network by Applying Accurate Information of Arrival Time Differences of Modal Traveling Waves. IEEE Trans. Ind. Inform, 16(5), 3124-3132. [ DOI:10.1109/TII.2019.2903267] 43. Pereira, C.E.M., & Zanetta, Jr., L.C. (2004). Fault location in transmission lines using one-terminal post fault voltage data. IEEE Trans. Power Del, 19(2), 570- 575. [ DOI:10.1109/TPWRD.2004.824391] 44. Poudineh-Ebrahimi, F., & Ghazizadeh-Ahsaee, M. (2018). Accurate and comprehe nsive fault location algorithm for two-terminal transmission lines. IET Gen., Transm. Distrib., 12(19), 4334 - 4340. [ DOI:10.1049/iet-gtd.2018.6084] 45. Rafinia, A., & Moshtagh, J. (2014). A new approach to fault location in three-phase underground distribution system using combination of wavelet analysis with ANN and FLS. Int. J. Elect. Power Energy Syst, 55, 261-274. [ DOI:10.1016/j.ijepes.2013.09.011] 46. Rathore, B., & Shaik, A.G. (2017). Wavelet-alienation based transmission line protection scheme. IET Gen., Transm. Distrib., 11(4), 995-1003. [ DOI:10.1049/iet-gtd.2016.1022] 47. Rui, L., Fei, W., Guoqing, F., Xue, X., & Ruib, Z. (2016). A general fault location method in complex power grid based on wide-area traveling wave data acquisition. Int. J. Elect. Power Energy Syst, 83, 213-218. [ DOI:10.1016/j.ijepes.2016.04.021] 48. Saha, M. M., Izykowski, J., & Rosolowski, E. (2010). Fault Location on Power Networks, ser. Power Systems. London: Ed. Springer. [ DOI:10.1007/978-1-84882-886-5] 49. Salehi, M., Birjandi, A. A. M., & Dong, X. (2021). Determining minimum number and placement of fault detectors in transmission network for fault location observability. Int. J. Electr. Power Eng, 124, 106386. [ DOI:10.1016/j.ijepes.2020.106386] 50. Salehi, M., & Namdari, F. (2018) Fault location on branched networks using mathematical morphology. IET Gen., Transm. Distrib., 12(1), 207-216. [ DOI:10.1049/iet-gtd.2017.0598] 51. Schweitzer III, E. O. (1990, Oct). A review of impedance-based fault locating experience. 14th Annual Iowa-Nebraska System Protection Seminar, Omaha, Nebraska. 52. Silva, M. da., Coury, D.V., Oleskovicz, M., & Segatto, E.C. (2010). Combined solution for fault location in three-terminal lines base on wavelet transforms. IET Gen., Transm. Distrib., 4(1), 94-103. [ DOI:10.1049/iet-gtd.2009.0249] 53. Spoor, D., & Zhu, J. G. (2006). Improved single-ended traveling-wave fault location algorithm based on experience with conventional substation transducers. IEEE Trans. Power Del, 23(3), 1714-1720. [ DOI:10.1109/TPWRD.2006.878091] 54. Wang, J., & Zhang, Y. (2022). Traveling Wave Propagation Characteristic-Based LCC-MMC Hybrid HVDC Transmission Line Fault Location Method. IEEE Trans. Power Del, 37(1), 208-218. [ DOI:10.1109/TPWRD.2021.3055840] 55. Wu, Q. H. . Zhang, J. F., & Zhang, D. J. (2003). Ultra-high-speed directional protection of transmission lines using mathematical morphology. IEEE Trans. Power Del, 18(4), 1127-1133. [ DOI:10.1109/TPWRD.2003.817513] 56. Zhang, F., Liu, Q., Liu, Y., Tong, N., Chen, S., & Zhang, C. (2020). Novel fault location method for power systems based on attention mechanism and double structure GRU neural network. IEEE Access 8, 75237-75248. [ DOI:10.1109/ACCESS.2020.2988909]
|