[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for Electricity Distribution Company

Dr Shervin Asadzadeh,
Volume 8, Issue 1 (9-2019)
Abstract

In order to gain a deep understanding of planned maintenance, check the weaknesses of distribution network and detect unusual events, the network outage should be traced and monitored. On the other hand, the most important task of electric power distribution companies is to supply reliable and stable electricity with the minimum outage and standard voltage. This research intends to use time series and artificial neural network and propose some models to forecast the failure rate of equipment in the two regions controlled by Tehran Power Distribution Company. The data have been extracted weekly from the ENOX software from March 2012 to March 2016. To this end, after data pre-processing, the appropriate models have been provided using Minitab and MATLAB software. Moreover, the average air temperature, the average rainfall and the average wind speed were selected as inputs to the neural network. The mean square error (MSE) was used as a criterion to evaluate the error corresponding to the proposed models. The results revealed that time series models perform better than MLP neural network in forecasting equipment failure rates and thus they can be used for future periods.
 

Page 1 from 1     

نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 4710