[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Social Network Membership
Linkedin
Researchgate
..
Indexing Databases
..
DOI
کلیک کنید
..
ِDOR
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 11, Issue 1 (4-2022) ::
ieijqp 2022, 11(1): 57-69 Back to browse issues page
A novel strategy based on group method of data handling neural network for detection of inrush current and preventing the mal-operation of the differential relay
Seyed Amir Hosseini * 1, Behrooz Taheri2
1- Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, 87717-67498, Iran.
2- Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Abstract:   (2615 Views)

Low impedance differential relays are widely used in the protection systems of power transformers. While being highly reliable, differential relays can misidentify the inrush currents generated during the switching of power transformers as faults and issue a tripping command when one is not needed. Therefore, these protection systems need a mechanism to differentiate between inrush currents and faults in order to prevent unnecessary activation. Accordingly, this paper presents a new method based on a group method of data handling (GMDH) neural network for differentiating faults from inrush currents. The proposed method can quickly detect a wide variety of faults that may occur simultaneously with inrush currents and is perfectly noise-resistant. The proposed method is compared with the conventional methods used in the industry, namely second harmonic and zero-crossing methods. The results demonstrate the ability of the proposed method to outperform conventional methods under a wide variety of operating conditions.

Keywords: Inrush current, Differential relay, Power system protection, Group method of data handling (GMDH).
Full-Text [PDF 1215 kb]   (509 Downloads)    
Type of Study: Research |
Received: 2021/10/16 | Accepted: 2021/12/13 | Published: 2022/04/26
References
1. Abniki, H., Monsef, H., Khajavi, P., & Dashti, H. (2010). A novel inductance-based technique for discrimination of internal faults from magnetizing inrush currents in power transformers. 2010 Modern Electric Power Systems,
2. Anastasakis, L., & Mort, N. (2001). The development of self-organization techniques in modelling: a review of the group method of data handling (GMDH). RESEARCH REPORT-UNIVERSITY OF SHEFFIELD DEPARTMENT OF AUTOMATIC CONTROL AND SYSTEMS ENGINEERING.
3. Bainy, R. G., & Silva, K. M. (2020). Enhanced generalized alpha plane for numerical differential protection applications. IEEE transactions on power delivery, 36(2), 587-597. [DOI:10.1109/TPWRD.2020.2985019]
4. Baoming, G., de Almeida, A. T., Qionglin, Z., & Xiangheng, W. (2005). An equivalent instantaneous inductance-based technique for discrimination between inrush current and internal faults in power transformers. IEEE transactions on power delivery, 20(4), 2473-2482. [DOI:10.1109/TPWRD.2005.855443]
5. Barbosa, D., Netto, U. C., Coury, D. V., & Oleskovicz, M. (2011). Power transformer differential protection based on Clarke's transform and fuzzy systems. IEEE transactions on power delivery, 26(2), 1212-1220. [DOI:10.1109/TPWRD.2010.2097281]
6. Behvandi, A., Seifossadat, S. G., & Saffarian, A. (2020). A new method for discrimination of internal fault from other transient states in power transformer using Clarke's transform and modified hyperbolic S-transform. Electric Power Systems Research, 178, 106023. [DOI:10.1016/j.epsr.2019.106023]
7. Bejmert, D., Kereit, M., Mieske, F., Rebizant, W., Solak, K., & Wiszniewski, A. (2020). Power transformer differential protection with integral approach. International Journal of Electrical Power & Energy Systems, 118, 105859. [DOI:10.1016/j.ijepes.2020.105859]
8. Bejmert, D., Rebizant, W., & Schiel, L. (2014). Transformer differential protection with fuzzy logic based inrush stabilization. International Journal of Electrical Power & Energy Systems, 63, 51-63. [DOI:10.1016/j.ijepes.2014.05.056]
9. Bi, D., Li, S., Wang, X., & Wang, W. (2008). A novel double-side average equivalent instantaneous inductance in nonsaturation zone based transformer protection. 2008 International Conference on Electrical Machines and Systems,
10. Bouderbala, R., Bentarzi, H., & Ouadi, A. (2011). Digital differential relay reliability enhancement of power transformer. International Journal of Circuits, Systems and Signal Processing, 5(3), 263-270.
11. Davarpanah, M., Sanaye-Pasand, M., & Iravani, R. (2012). Performance enhancement of the transformer restricted earth fault relay. IEEE transactions on power delivery, 28(1), 467-474. [DOI:10.1109/TPWRD.2012.2208204]
12. Geethanjali, M., Slochanal, S. M. R., & Bhavani, R. (2008). PSO trained ANN-based differential protection scheme for power transformers. Neurocomputing, 71(4-6), 904-918. [DOI:10.1016/j.neucom.2007.02.014]
13. Gondane, P. R., Sheikh, R. M., Chawre, K. A., Wasnik, V. V., Badar, A., & Hasan, M. (2018). Inrush current detection using wavelet transform and artificial neural network. 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), [DOI:10.1109/ICCMC.2018.8487832]
14. Guzman, A., Zocholl, S., Benmouyal, G., Altuve, H.J., 2002. A current-based solution for transformer differential protection. II. Relay description and evaluation. IEEE Trans. Power Deliv. 17 (4), 886-893. https://doi.org/10.1109/TPWRD.2002.803736 [DOI:10.1109/TPWRD.2002.803736.]
15. He, B., Zhang, X., & Bo, Z. Q. (2006). A new method to identify inrush current based on error estimation. IEEE transactions on power delivery, 21(3), 1163-1168. [DOI:10.1109/TPWRD.2005.861337]
16. Hosseini, S. A., Taheri, B., Abyaneh, H. A., & Razavi, F. (2021). Comprehensive power swing detection by current signal modeling and prediction using the GMDH method. Protection and Control of Modern Power Systems, 6(1), 1-11. [DOI:10.1186/s41601-021-00193-z]
17. Hunt, R., Schaefer, J., & Bentert, B. (2008). Practical experience in setting transformer differential inrush restraint. 2008 61st Annual conference for protective relay engineers, [DOI:10.1109/CPRE.2008.4515051]
18. Kolla, S. (1989). Application of block pulse functions for digital protection of power transformers. IEEE transactions on electromagnetic compatibility, 31(2), 193-196. [DOI:10.1109/15.18790]
19. Mao, P. L., & Aggarwal, R. K. (2001). A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network. IEEE transactions on power delivery, 16(4), 654-660. [DOI:10.1109/61.956753]
20. Medeiros, R., Costa, F., & Silva, K. (2015). Power transformer differential protection using the boundary discrete wavelet transform. IEEE transactions on power delivery, 31(5), 2083-2095. [DOI:10.1109/TPWRD.2015.2513778]
21. Nikolaev, N. Y., & Iba, H. (2003). Polynomial harmonic GMDH learning networks for time series modeling. Neural Networks, 16(10), 1527-1540. [DOI:10.1016/S0893-6080(03)00188-6]
22. Oliveira, M., & Bretas, A. (2009). Application of discrete wavelet transform for differential protection of power transformers. 2009 IEEE Bucharest PowerTech, [DOI:10.1109/PTC.2009.5282195]
23. Ozgonenel, O., & Karagol, S. (2014). Transformer differential protection using wavelet transform. Electric Power Systems Research, 114, 60-67. [DOI:10.1016/j.epsr.2014.04.008]
24. Patel, D., Chothani, N., & Mistry, K. (2018). Discrimination of inrush, internal, and external fault in power transformer using phasor angle comparison and biased differential principle. Electric Power Components and Systems, 46(7), 788-801. [DOI:10.1080/15325008.2018.1509915]
25. Pihler, J., Grcar, B., & Dolinar, D. (1997). Improved operation of power transformer protection using artificial neural network. IEEE transactions on power delivery, 12(3), 1128-1136. [DOI:10.1109/61.636919]
26. Rad, I. S., Alinezhad, M., Naghibi, S. E., & Kamarposhti, M. A. (2011). Detection of internal fault in differential transformer protection based on fuzzy method. International Journal of Physical Sciences, 6(26), 6150-6158.
27. Raju, K. (2012). Ramamohan Reddy, and M. Tech: Differential Relay Reliability Implement Enhancement of Power Transformer. International Journal of Modern Engineering Research (IJMER), 2, 3612-3618.
28. Salehimehr, S., Taheri, B., & Faghihlou, M. (2021). Detection of power swing and blocking the distance relay using the variance calculation of the current sampled data. Electrical Engineering, 1-15. [DOI:10.1007/s00202-021-01350-1]
29. Sanaye-Pasand, M., Zangiabadi, M., & Fereidunian, A. (2003). An extended magnetizing inrush restraint method applied to digital differential relays for transformer protection. 2003 IEEE power engineering society general meeting (IEEE Cat. No. 03CH37491), [DOI:10.1109/PES.2003.1270933]
30. Shin, M.-C., Park, C.-W., & Kim, J.-H. (2003). Fuzzy logic-based relaying for large power transformer protection. IEEE transactions on power delivery, 18(3), 718-724. [DOI:10.1109/TPWRD.2003.813598]
31. Taheri, B., Hosseini, S. A., & Salehimehr, S. An Energy Variation-Based Method for Discrimination Between the Internal Fault and Inrush Current in Power Transformers. 2020 14th International Conference on Protection and Automation of Power Systems (IPAPS),
32. Taheri, B., Hosseini, S. A., Salehimehr, S., & Razavi, F. A New Method for the End-To-End Testing of Differential Relays. 2020 14th International Conference on Protection and Automation of Power Systems (IPAPS),
33. Taheri, B., & Sedighizadeh, M. (2021). A moving window average method for internal fault detection of power transformers. Cleaner Engineering and Technology, 4, 100195. [DOI:10.1016/j.clet.2021.100195]
34. Tekdemir, I. G., & Alboyaci, B. (2016). A novel approach for improvement of power swing blocking and deblocking functions in distance relays. IEEE transactions on power delivery, 32(4), 1986-1994. [DOI:10.1109/TPWRD.2016.2600638]
35. Tripathy, M. (2010). Power transformer differential protection using neural network principal component analysis and radial basis function neural network. Simulation Modelling Practice and Theory, 18(5), 600-611. [DOI:10.1016/j.simpat.2010.01.003]
36. Tripathy, M., Maheshwari, R. P., & Verma, H. (2009). Power transformer differential protection based on optimal probabilistic neural network. IEEE transactions on power delivery, 25(1), 102-112. [DOI:10.1109/TPWRD.2009.2028800]
37. Velásquez, R. M. A., & Lara, J. V. M. (2020). Root cause analysis improved with machine learning for failure analysis in power transformers. Engineering Failure Analysis, 115, 104684. [DOI:10.1016/j.engfailanal.2020.104684]
38. Weng, H., Wang, S., Lin, X., Li, Z., & Huang, J. (2019). A novel criterion applicable to transformer differential protection based on waveform sinusoidal similarity identification. International Journal of Electrical Power & Energy Systems, 105, 305-314. [DOI:10.1016/j.ijepes.2018.08.027]
39. Wiszniewski, A., & Kasztenny, B. (1995). A multi-criteria differential transformer relay based on fuzzy logic. IEEE transactions on power delivery, 10(4), 1786-1792. [DOI:10.1109/61.473379]
40. Zhalefar, F., & Sanaye-Pasand, M. (2010). A new fuzzy-logic-based extended blocking scheme for differential protection of power transformers. Electric Power Components and Systems, 38(6), 675-694. [DOI:10.1080/15325000903489678]
41. Ziegler, G. (2012). Numerical differential protection: principles and applications. John Wiley & Sons.


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S A, Taheri B. A novel strategy based on group method of data handling neural network for detection of inrush current and preventing the mal-operation of the differential relay. ieijqp 2022; 11 (1) :57-69
URL: http://ieijqp.ir/article-1-859-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 1 (4-2022) Back to browse issues page
نشریه علمی- پژوهشی کیفیت و بهره وری صنعت برق ایران Iranian Electric Industry Journal of Quality and Productivity
Persian site map - English site map - Created in 0.06 seconds with 40 queries by YEKTAWEB 4645