:: دوره 11، شماره 1 - ( 1-1401 ) ::
جلد 11 شماره 1 صفحات 43-30 برگشت به فهرست نسخه ها
اینورتر افزاینده بدون ترانسفورماتور اصلاح شده با زمین مشترک بر پایه مبدل Semi-Quasi-Z-Source
معراج نوروزی1 ، فرهاد حق جو* 1، حمید جوادی1
1- دانشکده مهندسی برق- پردیس شهید عباسپور- دانشگاه شهید بهشتی، تهران، ایران
چکیده:   (2889 مشاهده)

اینورتر نیمه شبه-منبع امپدانسی (SqZS) با ساختار زمین مشترک و بدون ترانسفورماتور مزایای زیادی نسبت به  دیگر اینورترهای تک­فاز فراهم می‌کند. حذف جریان نشتی، چگالی انرژی زیاد، تعداد عناصر کم و قیمت پایین، آن را به یک گزینه جذاب به‌عنوان میکرو-اینورتر در کاربردهای فوتوولتائیک تبدیل می‌کند. بااین‌وجود، بهره ولتاژ واحد یکی از معایب اینورتر SqZS است. به‌عبارت‌دیگر اینورتر پایه SqZS قابلیت افزایش ولتاژ را ندارد و بیشینه ولتاژ AC قابل استحصال برابر با ولتاژ DC ورودی است. بنابراین در این مقاله اینورتر اصلاح­شده با قابلیت افزایش ولتاژ با عنوان (MSqZS) پیشنهاد شده است. اینورتر پیشنهادی، ساختاری اصلاح­شده از اینورتر پایه SqZS است که با اضافه نمودن خازن سری ضمن حفظ خاصیت زمین مشترک، امکان دستیابی به بهره‌ ولتاژ بالاتر از یک (حالت بوست) را فراهم می­گردد. مدولاسیون پهنای پالس سینوسی غیرخطی (NLSPWM) به نحوی اصلاح می­شود که امکان بهره­مندی از قابلیت نهفته در ساختار پایه SqZS جهت دستیابی به بهره ولتاژ بالاتر فراهم می­گردد. اینورتر پیشنهادی قادر به تغذیه بارهای با ضریب توان کمتر از یک بوده و قابلیت تزریق توان راکتیو را نیز دارد. نتایج حاصل از شبیه­سازی­ها و آزمایش‌های عملی در حالت‌های حلقه باز و حلقه بسته، صحت عملکرد اینورتر پیشنهادی را تائید می­کنند.

واژه‌های کلیدی: اینورتر نیمه شبه منبع امپدانسی، افزایش ولتاژ، خازن سری، مدولاسیون پهنای پالس سینوسی غیرخطی، ساختار بدون ترانسفورماتور، میکرو اینورتر فوتوولتائیک.
متن کامل [PDF 3676 kb]   (1179 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: برق و کامپیوتر
دریافت: 1400/4/21 | پذیرش: 1400/9/14 | انتشار: 1401/2/6
فهرست منابع
1. Ahmed, T., Soon, T. K., & Mekhilef, S. (2014). A single phase doubly grounded semi-Z-source inverter for photovoltaic (PV) systems with maximum power point tracking (MPPT). Energies, 7(6), 3618-3641. https://doi.org/10.3390/en7063618 [DOI:10.3390/en7063618.]
2. Araújo, S. V., Zacharias, P., & Mallwitz, R. (2009). Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems. IEEE Transactions on Industrial Electronics, 57(9), 3118-3128. [DOI:10.1109/TIE.2009.2037654]
3. Barzegarkhoo, R., Siwakoti, Y., Aguilera, R. P., Khan, N., Lee, S. S., & Blaabjerg, F. (2021). A Novel Dual-Mode Switched-Capacitor Five-Level Inverter With Common-Ground Transformerless Concept. IEEE Transactions on Power Electronics. [DOI:10.1109/TPEL.2021.3074517]
4. Cao, D., Jiang, S., Yu, X., & Peng, F. Z. (2011). Low-cost semi-Z-source inverter for single-phase photovoltaic systems. IEEE Transactions on Power Electronics, 26(12), 3514-3523. https://doi.org/10.1109/TPEL.2011.2148728 [DOI:10.1109/TPEL.2011.2148728.]
5. Cao, D., & Peng, F. Z. (2009). A Family of Z-source and Quasi-Z-source DC-DC Converters. 1097-1101. [DOI:10.1109/APEC.2009.4802800]
6. Darwish, H. A., & Fikri, M. (2006). Practical considerations for recursive DFT implementation in numerical relays. IEEE Transactions on Power Delivery, 22(1), 42-49. [DOI:10.1109/TPWRD.2006.874642]
7. Ding, Chiang, P., Miao, & Blaabjerg, F. (2013). Generalized multicell switched-inductor and switched-capacitor Z-source inverters. IEEE Transactions on Power Electronics, 28(2), 837-848. https://doi.org/10.1109/TPEL.2012.2204776 [DOI:10.1109/TPEL.2012.2204776.]
8. Escobar, G., Martinez-Rodriguez, P. R., Iturriaga-Medina, S., Mayo-Maldonado, J. C., Lopez-Sarabia, J., & Micheloud-Vernackt, O. M. (2019). Mitigation of leakage-ground currents in transformerless grid-tied inverters via virtual-ground connection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 3111-3123. [DOI:10.1109/JESTPE.2019.2933399]
9. Gambhir, A., Mishra, S. K., & Joshi, A. (2018). A modified PWM scheme to improve performance of a single-phase active-front-end impedance source inverter. IEEE Transactions on Industry Applications, 55(1), 928-942. [DOI:10.1109/TIA.2018.2867605]
10. Ghoshal, A., & John, V. (2010). Anti-windup Schemes for Proportional Integral and Proportional Resonant Controller. National Power Electronics Conference.
11. Hu, X., Ma, P., Gao, B., & Zhang, M. (2019). An integrated step-up inverter without transformer and leakage current for grid-connected photovoltaic system. IEEE Transactions on Power Electronics, 34(10), 9814-9827. [DOI:10.1109/TPEL.2019.2895324]
12. Huang, L., Zhang, M., Hang, L., Yao, W., & Lu, Z. (2013). A family of three-switch three-state single-phase Z-source inverters. IEEE Transactions on Power Electronics, 28(5), 2317-2329. https://doi.org/10.1109/TPEL.2012.2218132 [DOI:10.1109/TPEL.2012.2218132.]
13. Khan, D., Khan, M. M., Ali, Y., Ali, A., & Hussain, I. (2019). Resonance Mitigation and Performance Improvement in Distributed Generation based LCL Filtered Grid Connected Inverters. International Journal of Advanced Computer Science and Applications, 10(12). https://doi.org/10.14569/IJACSA.2019.0101208 [DOI:10.14569/IJACSA.2019.0101208.]
14. Khan, M. N. H., Forouzesh, M., Siwakoti, Y. P., Li, L., Kerekes, T., & Blaabjerg, F. (2019). Transformerless inverter topologies for single-phase photovoltaic systems: A comparative review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(1), 805-835. [DOI:10.1109/JESTPE.2019.2908672]
15. Kim, K., Cha, H., Kim, H., & Member, S. (2016). A New Single-Phase Switched-Coupled-Inductor DC-AC Inverter for Photovoltaic Systems. IEEE Transactions on Power Electronics, 2(c). https://doi.org/10.1109/TPEL.2016.2606489 [DOI:10.1109/TPEL.2016.2606489.]
16. Lee, S. S., Siwakoti, Y. P., Lim, C. S., & Lee, K.-B. (2020). An improved PWM technique to achieve continuous input current in common-ground transformerless boost inverter. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), 3133-3136. [DOI:10.1109/TCSII.2020.2967899]
17. Liu, H., Ji, Y., Yong, F., Wu, F., & Wheeler, P. (2019). Single-stage impedance source inverters with quasi-DC--DC output cell for working in dual inductor current modes. IET Power Electronics, 12(6), 1585-1592. [DOI:10.1049/iet-pel.2018.5263]
18. Long, B., Zhang, M., Liao, Y., Huang, L., & Chong, K. T. (2019). An overview of DC component generation, detection and suppression for grid-connected converter systems. IEEE Access, 7, 110426-110438. [DOI:10.1109/ACCESS.2019.2934175]
19. Lopez, O., Freijedo, F. D., Yepes, A. G., Fernandez-Comesana, P., Malvar, J., Teodorescu, R., & Doval-Gandoy, J. (2010). Eliminating ground current in a transformerless photovoltaic application. IEEE Transactions on Energy Conversion, 25(1), 140-147. [DOI:10.1109/TEC.2009.2037810]
20. McGrath, B. P., Holmes, D. G., & Galloway, J. J. H. (2005). Power converter line synchronization using a discrete Fourier transform (DFT) based on a variable sample rate. IEEE Transactions on Power Electronics, 20(4), 877-884. [DOI:10.1109/TPEL.2005.850944]
21. Mekhilef, S., & Ahmed, T. (2015). Semi-Z-source inverter topology for grid-connected photovoltaic system. IET Power Electronics, 8(1), 63-75. https://doi.org/10.1049/iet-pel.2013.0486 [DOI:10.1049/iet-pel.2013.0486.]
22. Meneses, D., Blaabjerg, F., García, Ó., & Cobos, J. A. (2013). Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Transactions on Power Electronics, 28(6), 2649-2663. https://doi.org/10.1109/TPEL.2012.2227820 [DOI:10.1109/TPEL.2012.2227820.]
23. Myrzik, J. M. A., & Calais, M. (2003). String and module integrated inverters for single-phase grid connected photovoltaic systems-a review. 2003 IEEE Bologna Power Tech Conference Proceedings, 2, 8--pp. [DOI:10.1109/PTC.2003.1304589]
24. Nguyen, M.-K., Cho, G.-B., & Lim, Y.-C. (2016). Switched-boost network-based single-phase boost DC--AC converter. IET Power Electronics, 9(14), 2723-2730. [DOI:10.1049/iet-pel.2016.0243]
25. Photovoltaics, D. G., & Storage, E. (2018). IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces. IEEE Std, 1547-2018.
26. Sarikhani, A., Takantape, M. M., & Hamzeh, M. (2020). A Transformerless Common-Ground Three-Switch Single-Phase Inverter for Photovoltaic Systems. 35(9), 8902-8909. [DOI:10.1109/TPEL.2020.2971430]
27. Shen, R., & Chung, H. S.-H. (2020). Mitigation of ground leakage current of single-phase PV inverter using hybrid PWM with soft voltage transition and nonlinear output inductor. IEEE Transactions on Power Electronics, 36(3), 2932-2946. [DOI:10.1109/TPEL.2020.3016867]
28. Siwakoti, Y. P., & Blaabjerg, F. (2018). Common-ground-type transformerless inverters for single-phase solar photovoltaic systems. IEEE Transactions on Industrial Electronics, 65(3), 2100-2111. https://doi.org/10.1109/TIE.2017.2740821 [DOI:10.1109/TIE.2017.2740821.]
29. Standard. (n.d.). Automatic Disconnection Device Between a Generator and the Public Low-Voltage Grid. VDE V 0126-1-1, 2006.
30. Tang, Y., Xie, S., & Zhang, C. (2010). Single-phase Z-source inverter. IEEE Transactions on Power Electronics, 26(12), 3869-3873. [DOI:10.1109/TPEL.2009.2039955]
31. Vázquez, N., Rosas, M., Hernández, C., Vázquez, E., & Perez-Pinal, F. J. (2015). A new common-mode transformerless photovoltaic inverter. IEEE Transactions on Industrial Electronics, 62(10), 6381-6391. [DOI:10.1109/TIE.2015.2426146]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 1 - ( 1-1401 ) برگشت به فهرست نسخه ها